Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2790409.2790420guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Spin-the-bottle sort and annealing sort: oblivious sorting via round-robin random comparisons

Published: 22 January 2011 Publication History

Abstract

We study sorting algorithms based on randomized round-robin comparisons. Specifically, we study Spin-the-bottle sort, where comparisons are unrestricted, and Annealing sort, where comparisons are restricted to a distance bounded by a temperature parameter. Both algorithms are simple, randomized, data-oblivious sorting algorithms, which are useful in privacy-preserving computations, but, as we show, Annealing sort is much more efficient. We show that there is an input permutation that causes Spin-the-bottle sort to require Ω(n2 log n) expected time in order to succeed, and that in O(n2 log n) time this algorithm succeeds with high probability for any input. We also show there is an specification of Annealing sort that runs in O(n log n) time and succeeds with very high probability.

References

[1]
M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, 3:1--19, 1983.
[2]
S. Assaf and E. Upfal. Fault tolerant sorting networks. SIAM J. Discrete Math., 4(4):472--480, 1991.
[3]
K. E. Batcher. Sorting networks and their applications. In Proc. 1968 Spring Joint Computer Conf., pages 307--314, Reston, VA, 1968. AFIPS Press.
[4]
A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A system for secure multi-party computation. In CCS '08: Proceedings of the 15th ACM conference on Computer and communications security, pages 257--266, New York, NY, USA, 2008. ACM.
[5]
T. Biedl, T. Chan, E. D. Demaine, R. Fleischer, M. Golin, J. A. King, and J. I. Munro. Fun-sort--or the chaos of unordered binary search. Discrete Appl. Math., 144(3):231--236, 2004.
[6]
D. T. Blackston and A. Ranade. Snakesort: A family of simple optimal randomized sorting algorithms. In ICPP '93: Proceedings of the 1993 International Conference on Parallel Processing, pages 201--204, Washington, DC, USA, 1993. IEEE Computer Society.
[7]
A. Boneh and M. Hofri. The coupon-collector problem revisited---a survey of engineering problems and computational methods. Communications in Statistics --- Stochastic Models, 13(1):39--66, 1997.
[8]
M. Braverman and E. Mossel. Noisy sorting without resampling. In SODA '08: Proceedings of the 19th ACM-SIAM Symposium on Discrete algorithms, pages 268--276, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.
[9]
B. Brejová. Analyzing variants of Shellsort. Information Processing Letters, 79(5):223--227, 2001.
[10]
R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computation. In STOC '02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 494--503, New York, NY, USA, 2002. ACM.
[11]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.
[12]
R. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM J. Comput., 22(1):62--71, 1993.
[13]
W. Dobosiewicz. An efficient variation of bubble sort. Inf. Process. Lett., 11(1):5--6, 1980.
[14]
W. Du and M. J. Atallah. Secure multi-party computation problems and their applications: a review and open problems. In NSPW '01: Proceedings of the 2001 workshop on New security paradigms, pages 13--22, New York, NY, USA, 2001. ACM.
[15]
W. Du and Z. Zhan. A practical approach to solve secure multi-party computation problems. In NSPW '02: Proceedings of the 2002 workshop on New security paradigms, pages 127--135, New York, NY, USA, 2002. ACM.
[16]
U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM J. Comput., 23(5):1001--1018, 1994.
[17]
M. T. Goodrich. Randomized Shellsort: A simple oblivious sorting algorithm. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1--16. SIAM, 2010.
[18]
M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. John Wiley & Sons, New York, NY, 2002.
[19]
H. Gruber, M. Holzer, and O. Ruepp. Sorting the slow way: an analysis of perversely awful randomized sorting algorithms. In FUN'07: Proceedings of the 4th international conference on Fun with algorithms, pages 183--197, Berlin, Heidelberg, 2007. Springer-Verlag.
[20]
C. A. R. Hoare. Quicksort. Comput. J., 5(1):10--15, 1962.
[21]
J. Incerpi and R. Sedgewick. Improved upper bounds on Shellsort. J. Comput. Syst. Sci., 31(2):210--224, 1985.
[22]
J. Incerpi and R. Sedgewick. Practical variations of Shellsort. Inf. Process. Lett., 26(1):37--43, 1987.
[23]
T. Jiang, M. Li, and P. Vitányi. A lower bound on the average-case complexity of Shellsort. J. ACM, 47(5):905--911, 2000.
[24]
D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, Reading, MA, 1973.
[25]
P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated annealing: theory and applications. Kluwer Academic Publishers, Norwell, MA, USA, 1987.
[26]
F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1992.
[27]
T. Leighton and C. G. Plaxton. Hypercubic sorting networks. SIAM J. Comput., 27(1):1--47, 1998.
[28]
D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay---a secure two-party computation system. In SSYM'04: Proceedings of the 13th conference on USENIX Security Symposium, pages 20--20, Berkeley, CA, USA, 2004. USENIX Association.
[29]
U. Maurer. Secure multi-party computation made simple. Discrete Appl. Math., 154(2):370--381, 2006.
[30]
M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.
[31]
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York, NY, 1995.
[32]
M. Paterson. Improved sorting networks with O(log N) depth. Algorithmica, 5(1):75--92, 1990.
[33]
C. G. Plaxton and T. Suel. Lower bounds for Shellsort. J. Algorithms, 23(2):221--240, 1997.
[34]
V. R. Pratt. Shellsort and sorting networks. PhD thesis, Stanford University, Stanford, CA, USA, 1972.
[35]
S. Rajasekaran and S. Sen. PDM sorting algorithms that take a small number of passes. In IPDPS '05: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Papers, page 10, Washington, DC, USA, 2005. IEEE Computer Society.
[36]
R. Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.
[37]
R. Sedgewick. Analysis of Shellsort and related algorithms. In ESA '96: Proceedings of the Fourth Annual European Symposium on Algorithms, pages 1--11, London, UK, 1996. Springer-Verlag.
[38]
J. Seiferas. Sorting networks of logarithmic depth, further simplified. Algorithmica, 53(3):374--384, 2009.
[39]
D. L. Shell. A high-speed sorting procedure. Commun. ACM, 2(7):30--32, 1959.
[40]
G. Wang, T. Luo, M. T. Goodrich, W. Du, and Z. Zhu. Bureaucratic protocols for secure two-party sorting, selection, and permuting. In 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS), pages 226--237. ACM, 2010.
[41]
M. A. Weiss and R. Sedgewick. Bad cases for shaker-sort. Information Processing Letters, 28(3):133--136, 1988.
[42]
J. Williams. Algorithm 232: Heasort. Commun. ACM, 7:347--348, 1964.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ANALCO '11: Proceedings of the Meeting on Analytic Algorithmics and Combinatorics
January 2011
149 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 22 January 2011

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)64
  • Downloads (Last 6 weeks)12
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media