Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks

Published: 01 June 2015 Publication History

Abstract

We introduce MultiPiles, a visualization to explore time-series of dense, weighted networks. MultiPiles is based on the physical analogy of piling adjacency matrices, each one representing a single temporal snapshot. Common interfaces for visualizing dynamic networks use techniques such as: flipping/animation; small multiples; or summary views in isolation. Our proposed 'piling' metaphor presents a hybrid of these techniques, leveraging each one's advantages, as well as offering the ability to scale to networks with hundreds of temporal snapshots. While the MultiPiles technique is applicable to many domains, our prototype was initially designed to help neuroscientists investigate changes in brain connectivity networks over several hundred snapshots. The piling metaphor and associated interaction and visual encodings allowed neuroscientists to explore their data, prior to a statistical analysis. They detected high-level temporal patterns in individual networks and this helped them to formulate and reject several hypotheses.

References

[1]
<label>{AB06}</label> Agarawala A., Balakrishnan R.: Keepin' it real: Pushing the desktop metaphor with physics, piles and the pen. In Proc. of CHI 2006, ACM, pp. pp.1283-1292. 3
[2]
<label>{ABHR*13}</label> Alper B., Bach B., Henry Riche N., Isenberg T., Fekete J.-D.: Weighted graph comparison techniques for brain connectivity analysis</otherTitle>. In <otherTitle>Proc. of CHI 2013, pp. pp.483-492. 2, 3, 4
[3]
<label>{APP11}</label> Archambault D., Purchase H.C., Pinaud B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE TVCG Volume 17, Issue 4 2011, pp.539-552. 3
[4]
<label>{APS14}</label> Ahn J.-w., Plaisant C., Shneiderman B.: A task taxonomy for network evolution analysis. IEEE TVCG Volume 20, Issue 3 2014, pp.365-376. 2
[5]
<label>{BBDW14}</label> Beck F., Burch M., Diehl S., Weiskopf D.: The State of the Art in Visualizing Dynamic Graphs</otherTitle>. In <otherTitle>Proc. of EuroVis 2014. 3
[6]
<label>{BBL12}</label> Boyandin I., Bertini E., Lalanne D.: A Qualitative Study on the Exploration of Temporal Changes in Flow Maps with Animation and Small-Multiples. Computer Graphics Forum Volume 31, Issue 3pt2 2012, pp.1005-1014. 3
[7]
<label>{BDA*14}</label> Bach B., Dragicevic P., Archambault D., Hurter C., Carpendale S.: A Review of Temporal Data Visualizations Based on Space-Time Cube Operations</otherTitle>. In <otherTitle>Proc. of EuroVis 2014. 3
[8]
<label>{BMZ*10}</label> Biswal B.B., Mennes M., Zuo X.-N., Gohel S., Kelly C., Smith S.M., Beckmann C.F., Adelstein J.S., Buckner R.L., Colcombe S., et al.: Toward discovery science of human brain function. Proc. of National Academy of Sciences Volume 107, Issue 10 2010, pp.4734-4739. 1
[9]
<label>{BN11}</label> Brandes U., Nick B.: Asymmetric Relations in Longitudinal Social Networks. IEEE TVCG Volume 17, Issue 12 Dec. 2011, pp.2283-2290. 3, 4, 6
[10]
<label>{BPF14a}</label> Bach B., Pietriga E., Fekete J.-D.: GraphDiaries: Animated Transitions and Temporal Navigation for Dynamic Networks. IEEE TVCG Volume 20, Issue 5 2014, pp.740-754. 3
[11]
<label>{BPF14b}</label> Bach B., Pietriga E., Fekete J.-D.: Visualizing Dynamic Networks with Matrix Cubes. In Proc. of CHI 2014, ACM, pp. pp.877-886. 3
[12]
<label>{BW14}</label> Burch M., Weiskopf D.: A flip-book of edge-splatted small multiples for visualizing dynamic graphs. In Proc. of Visual Information Communication and Interaction 2014, ACM, pp. pp.29-38. 3
[13]
<label>{CKN*03}</label> Collberg C., Kobourov S., Nagra J., Pitts J., Wampler K.: A system for graph-based visualization of the evolution of software. In Proc. of SoftVis 2003, ACM, pp. pp.77-ff. 3
[14]
<label>{DLBDS*06}</label> De Luca M., Beckmann C., De Stefano N., Matthews P., Smith S.M.: fmri resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage Volume 29, Issue 4 2006, pp.1359-1367. 1
[15]
<label>{FFM*13}</label> Fuchs J., Fischer F., Mansmann F., Bertini E., Isenberg P.: Evaluation of alternative glyph designs for time series data in a small multiple setting. In Proc. of CHI 2013, ACM, pp. pp.3237-3246. 3
[16]
<label>{fls}</label> fslview - Viewer for fMRI and DTI data. "http://neuro.debian.net/pkgs/fslview.html". online, acessed Dec. 4th, 2014. 2
[17]
<label>{FQ11}</label> Farrugia M., Quigley A.: Effective temporal graph layout: A comporative stydy of animations versus status display methods</otherTitle>. <otherTitle>Information Visualization 2011, pp.47-64. 3
[18]
<label>{HWA*13}</label> Hutchison R.M., Womelsdorf T., Allen E.A., Bandettini P.A., et al.: Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage Volume 80, Issue 0 2013, pp.360-378. 1, 2
[19]
<label>{KKC14}</label> Kerracher N., Kennedy J., Chalmers K.: The Design Space of Temporal Graph Visualisation. In Proc. of EuroVis 2014, Elmqvist N., Hlawitschka M., Kennedy J., Eds., Eurographics Association. 3
[20]
<label>{LSS13}</label> Lee M., Smyser C., Shimony J.: Resting-state fMRI: a review of methods and clinical applications</otherTitle>. <otherTitle>Americal Journal of Neuroradiology 2013, pp.1866-1872. 1
[21]
<label>{LWX*14}</label> Liao W., Wu G., Xu Q., Ji G., Zhang Z., Zang Y., Lu G.: DynamicBC: A MATLAB Toolbox for Dynamic Brain Connectome Analysis</otherTitle>. <otherTitle>Brain Connectivity 2014. 2
[22]
<label>{MSW92}</label> Mander R., Salomon G., Wong Y.Y.: A pile metaphor for supporting casual organization of information. In Proc. of CHI 1992, ACM, pp. pp.627-634. 3
[23]
<label>{PS12}</label> Perer A., Sun J.: MatrixFlow: temporal network visual analytics to track symptom evolution during disease progression. In Proc. of AIMA annual symposium 2012, American Medical Informatics Association. 3
[24]
<label>{Ren02}</label> Renksink R.: Change Detection</otherTitle>. <otherTitle>Annual Review of Psycholoy 2002. 3
[25]
<label>{RHVA08}</label> Rabinovich M., Huerta R., Varona P., Afraimovich V.: Transient cognitive dynamics, metastability, and decision making. PLoS Computational Biology, Volume 4 2008. 2
[26]
<label>{RM13}</label> Rufiange S., McGuffin M.J.: DiffAni: Visualizing Dynamic Graphs with a Hybrid of Difference Maps and Animation. IEEE TVCG Volume 19, Issue 12 2013, pp.2556-2565. 3
[27]
<label>{RM14}</label> Rufiange S., Melancon G.: AniMatrix: A Matrix-Based Visualization of Software Evolution</otherTitle>. In <otherTitle>Proc. of Working Conference on Software Visualization 2014. 3
[28]
<label>{SMDS14}</label> Sadana R., Major T., Dove A., Stasko J.: OnSet: A Visualization Technique for Large-scale Binary Set Data</otherTitle>. In <otherTitle>Proc. of VIS 2014. 3
[29]
<label>{SMS*07}</label> Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D.: Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of neuroscience Volume 27, Issue 9 2007, pp.2349-2356. 4
[30]
<label>{Spo11}</label> Sporns O.: Brain Networks. MIT Press, 2011. 1, 2
[31]
<label>{SWS10}</label> Stein K., Wegener R., Schlieder C.: Pixel-oriented visualization of change in social networks. Proc. of International Conference on Advances in Social Networks Analysis and Mining Volume 6 2010, pp.233-240. 3
[32]
<label>{vWvS99}</label> van Wijk J., van Selow E.: Cluster and calendar based visualization of time series data</otherTitle>. In <otherTitle>Proc. of InfoVis 1999, pp. pp.4-9, 140. 5
[33]
<label>{XWH14}</label> Xia M., Wang J., He Y.: BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE, Volume 8 2014. 2
[34]
<label>{YEL10}</label> Yi J.-S., Elmqvist N., Lee S.: TimeMatrix: Visualizing Temporal Social Networks Using Interactive Matrix-Based Visualizations. In International Journal of Human-Computer Interaction 2010, vol. Volume 26, pp. pp.1031-1051. 3, 6

Cited By

View all
  • (2024)DG Comics: Semi-Automatically Authoring Graph Comics for Dynamic GraphsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345634031:1(973-983)Online publication date: 10-Sep-2024
  • (2023)DiffSeer: Difference-Based Dynamic Weighted Graph VisualizationIEEE Computer Graphics and Applications10.1109/MCG.2023.324828943:3(12-23)Online publication date: 1-May-2023
  • (2022)The Pattern is in the Details: An Evaluation of Interaction Techniques for Locating, Searching, and Contextualizing Details in Multivariate Matrix VisualizationsProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3517673(1-15)Online publication date: 29-Apr-2022
  • Show More Cited By

Index Terms

  1. Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Computer Graphics Forum
    Computer Graphics Forum  Volume 34, Issue 3
    June 2015
    510 pages
    ISSN:0167-7055
    EISSN:1467-8659
    Issue’s Table of Contents

    Publisher

    The Eurographs Association & John Wiley & Sons, Ltd.

    Chichester, United Kingdom

    Publication History

    Published: 01 June 2015

    Author Tags

    1. Categories and Subject Descriptors according to ACM CCS
    2. H.5.2 [Information Interfaces and Presentation]: User Interfaces-Graphical user interfaces

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)DG Comics: Semi-Automatically Authoring Graph Comics for Dynamic GraphsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345634031:1(973-983)Online publication date: 10-Sep-2024
    • (2023)DiffSeer: Difference-Based Dynamic Weighted Graph VisualizationIEEE Computer Graphics and Applications10.1109/MCG.2023.324828943:3(12-23)Online publication date: 1-May-2023
    • (2022)The Pattern is in the Details: An Evaluation of Interaction Techniques for Locating, Searching, and Contextualizing Details in Multivariate Matrix VisualizationsProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3517673(1-15)Online publication date: 29-Apr-2022
    • (2022)Interactive Data ComicsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311484928:1(944-954)Online publication date: 1-Jan-2022
    • (2021)Analyzing Dynamic Hypergraphs with Parallel Aggregated Ordered Hypergraph VisualizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.293319627:1(1-13)Online publication date: 1-Jan-2021
    • (2020)Visualization of nonlinear programming for robot motion planningProceedings of the 13th International Symposium on Visual Information Communication and Interaction10.1145/3430036.3430050(1-8)Online publication date: 8-Dec-2020
    • (2020)Interactive Time-Series of Measures for Exploring Dynamic NetworksProceedings of the International Conference on Advanced Visual Interfaces10.1145/3399715.3399922(1-9)Online publication date: 28-Sep-2020
    • (2020)Visual Encodings for Networks with Multiple Edge TypesProceedings of the 2020 International Conference on Advanced Visual Interfaces10.1145/3399715.3399827(1-9)Online publication date: 28-Sep-2020
    • (2020)Interaction Techniques for Visual Exploration Using Embedded Word-Scale VisualizationsProceedings of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3313831.3376842(1-13)Online publication date: 21-Apr-2020
    • (2018)Clustering for stacked edge splattingProceedings of the Conference on Vision, Modeling, and Visualization10.2312/vmv.20181262(127-134)Online publication date: 10-Oct-2018
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media