Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2888619.2888665acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

Input uncertainty and indifference-zone ranking & selection

Published: 06 December 2015 Publication History

Abstract

The indifference-zone (IZ) formulation of ranking and selection (R&S) is the foundation of many procedures that have been useful for choosing the best among a finite number of simulated alternatives. Of course, simulation models are imperfect representations of reality, which means that a simulation-based decision, such as choosing the best alternative, is subject to model risk. In this paper we explore the impact of model risk due to input uncertainty on IZ R&S. "Input uncertainty" is the result of having estimated ("fit") the simulation input models to observed real-world data. We find that input uncertainty may force the user to revise, or even abandon, their objectives when employing a R&S procedure, or it may have very little effect on selecting the best system even when the marginal input uncertainty is substantial.

References

[1]
Barton, R. R. 2012. "Tutorial: Input Uncertainty in Output Analysis". In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, 1--12. Piscataway, NJ, USA: IEEE.
[2]
Bechhofer, R. E. 1954. "A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with Known Variances". The Annals of Mathematical Statistics 25 (1): 16--39.
[3]
Bechhofer, R. E., D. M. Goldsman, and T. J. Santner. 1995. Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons. New York: Wiley.
[4]
Corlu, C. G., and B. Biller. 2013. "A Subset Selection Procedure under Input Parameter Uncertainty". In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 463--473. Piscataway, NJ, USA: IEEE.
[5]
Fan, W., L. J. Hong, and X. Zhang. 2013. "Robust Selection of the Best". In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 868--876. Piscataway, NJ, USA: IEEE.
[6]
Hong, L. J. 2006. "Fully Sequential Indifference-Zone Selection Procedures with Variance-Dependent Sampling". Naval Research Logistics 53 (5): 464--476.
[7]
Kim, S.-H., and B. L. Nelson. 2001. "A Fully Sequential Procedure for Indifference-zone Selection in Simulation". ACM Transactions on Modeling and Computer Simulation 11 (3): 251--273.
[8]
Kim, S.-H., and B. L. Nelson. 2006. "Selecting the Best System". In Handbook in Operations Research and Management Science: Simulation, edited by S. G. Henderson and B. L. Nelson. Amsterdam: Elsevier.
[9]
Kutner, M., C. Nachtsheim, J. Neter, and W. Li. 2004. Applied Linear Statistical Models. 5 ed. McGraw-Hill/Irwin.
[10]
Nelson, B. L., and S. Banerjee. 2001. "Selecting a Good System: Procedures and Inference". IIE Transactions 33 (3): 149--166.
[11]
Nelson, B. L., and F. J. Matejcik. 1995. "Using Common Random Numbers for Indifference-Zone Selection and Multiple Comparisons in Simulation". Management Science 41 (12): 1935--1945.
[12]
Song, E., B. L. Nelson, and C. D. Pegden. 2014. "Advanced Tutorial: Input Uncertainty Quantification". In Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 162--176. Piscataway, NJ, USA: IEEE.

Cited By

View all
  • (2023)Data-Driven Optimal Allocation for Ranking and Selection under Unknown Sampling DistributionsProceedings of the Winter Simulation Conference10.5555/3643142.3643424(3376-3387)Online publication date: 10-Dec-2023
  • (2023)Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input DataACM Transactions on Modeling and Computer Simulation10.1145/3617595Online publication date: 29-Aug-2023
  • (2021)Selection of the most probable best under input uncertaintyProceedings of the Winter Simulation Conference10.5555/3522802.3522951(1-12)Online publication date: 13-Dec-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '15: Proceedings of the 2015 Winter Simulation Conference
December 2015
4051 pages
ISBN:9781467397414

Sponsors

Publisher

IEEE Press

Publication History

Published: 06 December 2015

Check for updates

Qualifiers

  • Research-article

Conference

WSC '15
Sponsor:
WSC '15: Winter Simulation Conference
December 6 - 9, 2015
California, Huntington Beach

Acceptance Rates

WSC '15 Paper Acceptance Rate 202 of 296 submissions, 68%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Data-Driven Optimal Allocation for Ranking and Selection under Unknown Sampling DistributionsProceedings of the Winter Simulation Conference10.5555/3643142.3643424(3376-3387)Online publication date: 10-Dec-2023
  • (2023)Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input DataACM Transactions on Modeling and Computer Simulation10.1145/3617595Online publication date: 29-Aug-2023
  • (2021)Selection of the most probable best under input uncertaintyProceedings of the Winter Simulation Conference10.5555/3522802.3522951(1-12)Online publication date: 13-Dec-2021
  • (2020)Joint resource allocation for input data collection and simulationProceedings of the Winter Simulation Conference10.5555/3466184.3466427(2126-2137)Online publication date: 14-Dec-2020
  • (2019)Fixed confidence ranking and selection under input uncertaintyProceedings of the Winter Simulation Conference10.5555/3400397.3400699(3717-3727)Online publication date: 8-Dec-2019
  • (2019)Stochastic approximation for simulation optimization under input uncertainty with streaming dataProceedings of the Winter Simulation Conference10.5555/3400397.3400689(3597-3608)Online publication date: 8-Dec-2019
  • (2017)Bayesian simulation optimization with input uncertaintyProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242372(1-11)Online publication date: 3-Dec-2017
  • (2017)Robust simulation based optimization with input uncertaintyProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242371(1-11)Online publication date: 3-Dec-2017
  • (2017)Ranking and selection under input uncertaintyProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242370(1-12)Online publication date: 3-Dec-2017
  • (2016)Optimal computing budget allocation with input uncertaintyProceedings of the 2016 Winter Simulation Conference10.5555/3042094.3042210(839-846)Online publication date: 11-Dec-2016

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media