Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
Skip header Section
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or DieJanuary 2016
Publisher:
  • Wiley Publishing
ISBN:978-1-119-14567-7
Published:11 January 2016
Pages:
368
Skip Bibliometrics Section
Reflects downloads up to 25 Jan 2025Bibliometrics
Skip Abstract Section
Abstract

"Mesmerizing & fascinating..." The Seattle Post-Intelligencer "TheFreakonomicsof big data." Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating surprisingly accessible introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a how to for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnaturalresource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big dataembodies an extraordinary wealth of experience from which to learn. Predictive Analyticsunleashes the power of data. With this technology,the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction now in its Revised and Updated edition former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death including one health insurance company. How U.S. Bank and Obama for America calculated and Hillary for America 2016 plans to calculate the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer usedpredictive modelingto answer questions and beat the human champs on TV'sJeopardy! How companies ascertain untold, private truths how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it or consumed by it get a handle on the power of Predictive Analytics.

Contributors
  • University of Arkansas for Medical Sciences

Reviews

H. Van Dyke Parunak

A wise man (reportedly Yogi Berra, but more likely a legislator in the Danish parliament) once observed, "Prediction is difficult, especially of the future." In spite of the challenge, humanity's oldest written records attest the demand for tools for prognostication. Today's seers have traded computers for the sheep livers of ancient Mesopotamia, and data scientists have taken the place of the priests of Marduk, but to business executives faced with commissioning predictive products, the technology seems no less arcane and inaccessible. In this second edition of a successful 2013 title, Eric Siegel draws back the curtain, providing an easy-to-understand account of what current offerings in predictive analytics can do, the principles that guide their use, and a wide range of concrete case studies. While the 332-page volume assumes no technical background, two online supplements provide 131 pages of notes and references to sources for the cases presented and technical papers with mathematical details. The size of these supplements, which were integral to the 2013 edition's 320 pages, are an indication of the amount of new, updated material documenting this fast-moving field. Online resources also include teaching materials to support use of the book in the classroom. After an introductory chapter, Siegel develops the subject from seven perspectives. Chapter 1 addresses deployment, the decision to entrust real-world decisions with concrete consequences to the conclusions of an electronic seer. Chapter 2 explores the ethical issues involved in the massive collection of personal data and its use in prediction. Siegel recognizes the sensitivity of the subject, but argues that the more data is available, the better prediction is, and the less danger there is from mistaken predictions. Chapter 3 focuses on the data that drives the new algorithms and some statistical flukes that can lead to misleading conclusions. Chapter 4 provides a clear, nontechnical explanation of decision trees, one of the main algorithms used in the field, and chapter 5 emphasizes the power of ensembles of diverse models. Chapter 6 is an extended review of IBM's Watson and the Jeopardy challenge. Chapter 7 focuses on the difference between predicting an outcome of an action and comparing that outcome with what would have happened if the action had not been taken, sometimes called uplift or persuasion modeling. Every chapter is amply supported by case studies, and at the center of the book is a collection of 182 summaries of further cases, all documented in the online notes. This volume is an excellent resource both for nontechnical readers who want some understanding of what predictive analysis can do and for developers of tools and applications in this field seeking to understand the state of practice that others have achieved. It engages the reader in a lively, concrete review of the state of the field, and in a spirit of appreciation, I note three questions that it simulated in my mind. First, as the word is commonly used, "prediction" refers to reasoning from current facts to future events that result from those facts. Another broad area of data mining, classification, seeks to label data items based on their similarity to other data items, without any distinction of past and future. Siegel is certainly aware of this distinction, and he labors to justify the inclusion of Watson in his examples. On page 220, he recognizes that "answering questions is not prediction in the conventional sense," but appeals to an alternative sense of "predict": "to imperfectly infer an unknown." This definition broadens the sense of "predict" so much as to make it meaningless, though he goes on to suggest that what Watson is doing is predicting what a human expert would say about the answer that it produces. But page 220 is a bit late to address this distinction. Many of the examples in the introduction (for example, grading student essays, detecting distracted drivers, recognizing fraudulent banking transactions), as well as throughout the book, are not predictive in any temporal sense. It would be wonderful to have a volume on "nonpredictive analytics" as clear and as well documented as this one. Second, the methods he considers are all based on statistics, and thus do not engage causality. The current market is focused on the accuracy of prediction, whatever the underlying reasoning, but responsible use of predictive analytics depends on engaging the decision-maker with a causal explanation for the prediction, a requirement that statistical methods cannot address. There are predictive technologies (for example, constructive agent-based simulation or system dynamics) that embody causal theories of the world, and one looks forward to a third edition of the book that touches on some of these less common but very promising approaches and their roles in more intelligent use of prediction by decision-makers. Third, the book takes an asymmetric view of prediction: prediction is something done by one group to anticipate the actions of another group, and thus to decide how to act toward that other group. This view leads naturally to accuracy as the standard for evaluating predictive algorithms. After learning of these techniques, I might reasonably want a system to predict my own actions and their likely outcomes, so that I could modify my behavior to avoid undesirable consequences. If I change my behavior in light of the prediction, the prediction becomes false, but in this case the prediction might still have given me very useful insight. How should one evaluate predictive analytics used in settings where their success intrinsically diminishes their accuracy__?__ More reviews about this item: Amazon , Goodreads Online Computing Reviews Service

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Recommendations