Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2936924.2937070acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
research-article

On Decentralized Coordination for Spatial Task Allocation and Scheduling in Heterogeneous Teams

Published: 09 May 2016 Publication History

Abstract

In the context of coordination and planning in collaborative multi-robot/agent systems, we consider a general reference problem that includes tasks that are spatially localized and have an associated service time, and accounts for the use of a heterogeneous team, in which different robots may have a different performance on the same task. A mixed integer linear formulation is introduced and used to solve the problem model in a centralized iterative manner: in closed-loop, team-level plans are adaptively computed and sent out. Unfortunately, a centralized scheme can suffer from computational and communication shortcomings. Therefore, we introduce a top-down recipe for decentralization, aiming to balance the tradeoff among implementation costs, computational requirements, and quality of coordination. The decentralized architecture depends on various aspects that we study through an empirical sensitivity analysis. Results show that the impact and the relationships among the different aspects are far from being obvious or intuitive. A number of practical lessons are learned, that could apply to other similar problems and/or decentralized architectures derived in the same top-down modality.

References

[1]
M. Alighanbari and J. How. Decentralized Task Assignment for Unmanned Aerial Vehicles. In IEEE Conf. on Decision and Control, pages 5668--5673, 2005.
[2]
C. Amato, G. Konidaris, G. Cruz, C. A. Maynor, J. P. How, and L. P. Kaelbling. Planning for decentralized control of multiple robots under uncertainty. In Proc. of IEEE International Conference on Robotics and Automation (ICRA), pages 1241--1248, 2015.
[3]
F. Amigoni, N. Basilico, and A. Quattrini Li. How Much Worth Is Coordination of Mobile Robots for Exploration in Search and Rescue? In RoboCup 2012: Robot Soccer World Cup XVI, volume 7500 LNAI, pages 106--117. Springer Berlin Heidelberg, 2013.
[4]
M. Anderson and N. Papanikolopoulos. Implicit cooperation strategies for multi-robot search of unknown areas. Journal of Intelligent and Robotic Systems, 53(4):381--397, 2008.
[5]
M. Bernardine Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordination: A survey and analysis. Proc. of the IEEE, 94(7):1257--1270, 2006.
[6]
N. Bezzo, B. Griffin, P. Cruz, J. Donahue, R. Fierro, and J. Wood. A Cooperative Heterogeneous Mobile Wireless Mechatronic System. IEEE/ASME Transactions on Mechatronics, 19(1):20--31, 2014.
[7]
A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, and M. Dorigo. Self-organized task allocation to sequentially interdependent tasks in swarm robotics. International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 28(1):101--125, 2014.
[8]
L. Chen and E. Miller-Hooks. Optimal team deployment in urban search and rescue. Transportation Research Part B: Methodological, 46(8):984--999, 2012.
[9]
H. L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 25(4):912--926, 2009.
[10]
D. Claes, F. A. Oliehoek, K. Tuyls, and D. Hennes. Effective Approximations for Multi-Robot Coordination in Spatially Distributed Tasks. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 881--890, 2015.
[11]
D. Di Paola, A. Gasparri, D. Naso, G. Ulivi, and F. L. Lewis. Decentralized task sequencing and multiple mission control for heterogeneous robotic networks. In IEEE International Conference on Robotics and Automation, pages 4467--4473. IEEE, 2011.
[12]
J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control for gossiping robots. IEEE Transactions on Robotics, 28(2):364--378, 2012.
[13]
E. Feo Flushing, L. M. Gambardella, and G. A. Di Caro. A mathematical programming approach to collaborative missions with heterogeneous teams. In Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems (IROS), pages 396--403, 2014.
[14]
S. K. Gan, R. Fitch, and S. Sukkarieh. Online decentralized information gathering with spatial-temporal constraints. Autonomous Robots, 37(1):1--25, 2014.
[15]
B. P. Gerkey and M. J. Matarić. Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5):758--768, 2002.
[16]
G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 151(1):1--11, 2003.
[17]
G. A. Hollinger and S. Singh. Multirobot coordination with periodic connectivity: Theory and experiments. IEEE Transactions on Robotics, 28(4):967--973, 2012.
[18]
E. Jones, B. Browning, M. Dias, B. Argall, M. Veloso, and A. Stentz. Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks. In Proc. of IEEE International Conference on Robotics and Automation (ICRA), pages 570--575, 2006.
[19]
G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive taxonomy for multi-robot task allocation. The International Journal of Robotics Research, 32(12):1495--1512, 2013.
[20]
T. Lemaire, R. Alami, and S. Lacroix. A distributed tasks allocation scheme in multi-UAV context. Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), 4:3622--3627, 2004.
[21]
L. Luo, N. Chakraborty, and K. Sycara. Multi-robot assignment algorithm for tasks with set precedence constraints. In IEEE International Conference on Robotics and Automation, pages 2526--2533, 2011.
[22]
J. Parker, E. Nunes, J. Godoy, and M. Gini. Exploiting spatial locality and heterogeneity of agents for search and rescue teamwork. Journal of Field Robotics, 7, 2015.
[23]
S. Ponda, J. Redding, Han-Lim Choi, J. P. How, M. Vavrina, and J. Vian. Decentralized planning for complex missions with dynamic communication constraints. In Proc. of American Control Conference, pages 3998--4003. IEEE, 2010.
[24]
S. S. Ponda, L. B. Johnson, A. N. Kopeikin, H.-L. Choi, and J. P. How. Distributed Planning Strategies to Ensure Network Connectivity for Dynamic Heterogeneous Teams. IEEE Journal on Selected Areas in Communications, 30(5):861--869, 2012.
[25]
S. Sariel-Talay, T. R. Balch, and N. Erdogan. A generic framework for distributed multirobot cooperation. Journal of Intelligent and Robotic Systems, 63(2):323--358, 2011.
[26]
P. M. Shiroma and M. F. M. Campos. CoMutaR: A framework for multi-robot coordination and task allocation. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 4817--4824, 2009.
[27]
P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. The orienteering problem: A survey. European Journal of Operational Research, 209(1):1--10, 2011.
[28]
L. Vig and J. A. Adams. Market-Based Multi-robot Coalition Formation. In Distributed Autonomous Robotic Systems 7, pages 227--236. Springer, 2006.
[29]
F. Wu, S. Zilberstein, and X. Chen. Online planning for multi-agent systems with bounded communication. Artificial Intelligence, 175(2):487--511, 2011.
[30]
Y. Zhang and L. E. Parker. IQ-ASyMTRe: Forming Executable Coalitions for Tightly Coupled Multirobot Tasks. IEEE Trans. on Robotics, 29(2):400--416, 2013.
[31]
Y. Zhang, L. E. Parker, and S. Kambhampati. Coalition coordination for tightly coupled multirobot tasks with sensor constraints. In Proc. of IEEE International Conference on Robotics and Automation (ICRA), pages 1090--1097, 2014.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
AAMAS '16: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems
May 2016
1580 pages
ISBN:9781450342391

Sponsors

  • IFAAMAS

In-Cooperation

Publisher

International Foundation for Autonomous Agents and Multiagent Systems

Richland, SC

Publication History

Published: 09 May 2016

Check for updates

Author Tags

  1. collaborative teams
  2. decentralized coordination and planning
  3. multi-robot systems
  4. task allocation

Qualifiers

  • Research-article

Funding Sources

  • Swiss National Science Foundation

Conference

AAMAS '16
Sponsor:

Acceptance Rates

AAMAS '16 Paper Acceptance Rate 137 of 550 submissions, 25%;
Overall Acceptance Rate 1,155 of 5,036 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 178
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media