Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Stabbing Simplices by Points and Flats

Published: 01 March 2010 Publication History

Abstract

The following result was proved by Bárány in 1982: For every dź1, there exists cd>0 such that for every n-point set S in źd, there is a point pźźd contained in at least cdnd+1źO(nd) of the d-dimensional simplices spanned by S.
We investigate the largest possible value of cd. It was known that cd≤1/(2d(d+1)!) (this estimate actually holds for every point set S). We construct sets showing that cd≤(d+1)ź(d+1), and we conjecture that this estimate is tight. The best known lower bound, due to Wagner, is cdźźd:=(d2+1)/((d+1)!(d+1)d+1); in his method, p can be chosen as any centerpoint of S. We construct n-point sets with a centerpoint that is contained in no more than źdnd+1+O(nd) simplices spanned by S, thus showing that the approach using an arbitrary centerpoint cannot be further improved.
We also prove that for every n-point set Sźźd, there exists a (dź2)-flat that stabs at least cd,dź2n3źO(n2) of the triangles spanned by S, with $c_{d,d-2}\ge\frac{1}{24}(1-1/(2d-1)^{2})$ . To this end, we establish an equipartition result of independent interest (generalizing planar results of Buck and Buck and of Ceder): Every mass distribution in źd can be divided into 4dź2 equal parts by 2dź1 hyperplanes intersecting in a common (dź2)-flat.

References

[1]
Alon, N., Bárány, I., Füredi, Z., Kleitman, D.J.: Point selections and weak ¿-nets for convex hulls. Comb. Probab. Comput. 1, 189---200 (1992). http://www.math.tau.ac.il/~nogaa/PDFS/abfk3.pdf
[2]
Bárány, I.: A generalization of Carathéodory's theorem. Discrete Math. 40, 141---152 (1982)
[3]
Bárány, I., Füredi, Z., Lovász, L.: On the number of halving planes. Combinatorica 10(2), 175---183 (1990). http://www.cs.elte.hu/~lovasz/morepapers/halvingplane.pdf
[4]
Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006)
[5]
Buck, R.C., Buck, E.F.: Equipartition of convex sets. Math. Mag. 22, 195---198 (1948---1949)
[6]
Boros, E., Füredi, Z.: Su un teorema di Kárteszi nella geometria combinatoria. Archimede 2, 71---76 (1977)
[7]
Boros, E., Füredi, Z.: The number of triangles covering the center of an n-set. Geom. Dedic. 17, 69---77 (1984)
[8]
Bukh, B.: A point in many triangles. Electron. J. Combin. 13(1), Note 10, 3 pp. (2006), (electronic)
[9]
Ceder, J.G.: Generalized sixpartite problems. Bol. Soc. Mat. Mex. (2) 9, 28---32 (1964)
[10]
Dey, T.K., Edelsbrunner, H.: Counting triangle crossings and halving planes. Discrete Comput. Geom. 12(1), 281---289 (1994)
[11]
Eppstein, D.: Improved bounds for intersecting triangles and halving planes. J. Comb. Theory Ser. A 62(1), 176---182 (1993). http://www.ics.uci.edu/~eppstein/pubs/Epp-TR-91-60.pdf
[12]
Fadell, E.R.: Ideal-valued generalizations of Ljusternik---Schnierelmann category, with applications. In: Fadell, E., et al. (eds.) Topics in Equivariant Topology. Sém. Math. Sup., vol. 108, pp. 11---54. Press Univ. Montréal, Montréal (1989)
[13]
Fadell, E.R., Husseini, S.: An ideal-valued cohomological index theory with applications to Borsuk---Ulam and Bourgin---Yang theorems. Ergod. Theory Dynam. Sys. 8, 73---85 (1988)
[14]
Inoue, A.: Borsuk-Ulam type theorems on Stiefel manifolds. Osaka J. Math. 43(1), 183---191 (2006). http://projecteuclid.org/euclid.ojm/1146243001
[15]
Kárteszi, F.: Extremalaufgaben über endliche Punktsysteme. Publ. Math. (Debr.) 4, 16---27 (1955)
[16]
Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)
[17]
Matoušek, J.: Using the Borsuk---Ulam Theorem. Springer, Berlin (2008). Revised 2nd printing
[18]
Moon, J.W.: Topics on Tournaments. Holt, Rinehart and Winston, New York (1968)
[19]
Nivasch, G., Sharir, M.: Eppstein's bound on intersecting triangles revisited. J. Comb. Theory Ser. A 116(2), 494---497 (2009). arXiv:0804.4415
[20]
Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291---300 (1947)
[21]
Smorodinsky, S.: Combinatorial problems in computational geometry. Ph.D. thesis, Tel Aviv University, June 2003. http://www.cs.bgu.ac.il/~shakhar/my_papers/phd.ps.gz
[22]
Wagner, U.: On k-sets and applications. Ph.D. thesis, ETH Zürich, June 2003. http://www.inf.ethz.ch/~emo/DoctThesisFiles/wagner03.pdf
[23]
Welzl, E.: Entering and leaving j-facets. Discrete Comput. Geom. 25, 351---364 (2001). http://www.inf.ethz.ch/personal/emo/PublFiles/EnterLeave_DCG25_01.ps
[24]
Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109---111 (1962)
[25]
¿ivaljević, R.T.: User's guide to equivariant methods in combinatorics II. Publ. Inst. Math. (Beogr.) 64(78), 107---132 (1998)
[26]
¿ivaljević, R.T.: Topological methods. In: Goodman, J.E., O'Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn. CRC Press, Boca Raton (2004). Chap. 14
[27]
¿ivaljević, R.T., Vrećica, S.T.: The colored Tverberg's problem and complexes of injective functions. J. Comb. Theory Ser. A 61(2), 309---318 (1992)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 43, Issue 2
March 2010
295 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 March 2010

Author Tags

  1. Centerpoint
  2. Cohomological index
  3. Equipartition
  4. Equivariant map
  5. Selection lemma
  6. Simplex

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media