Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Extended Formulations for Polygons

Published: 01 October 2012 Publication History

Abstract

The extension complexity of a polytope P is the smallest integer k such that P is the projection of a polytope Q with k facets. We study the extension complexity of n-gons in the plane. First, we give a new proof that the extension complexity of regular n-gons is O(logn), a result originating from work by Ben-Tal and Nemirovski (Math. Oper. Res. 26(2), 193---205, 2001). Our proof easily generalizes to other permutahedra and simplifies proofs of recent results by Goemans (2009), and Kaibel and Pashkovich (2011). Second, we prove a lower bound of $\sqrt{2n}$ on the extension complexity of generic n-gons. Finally, we prove that there exist n-gons whose vertices lie on an O(n) O(n2) integer grid with extension complexity $\varOmega (\sqrt{n}/\sqrt{\log n})$.

References

[1]
Ajtai, M., Komlós, J., Szemerédi, E.: An O(nlogn) sorting network. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC'83, pp. 1---9. ACM, New York (1983)
[2]
Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math. Oper. Res. 26(2), 193---205 (2001)
[3]
Cohen, J.E., Rothblum, U.G.: Nonnegative ranks, decompositions, and factorizations of nonnegative matrices. Linear Algebra Appl. 190, 149---168 (1993)
[4]
Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR 8(1), 1---48 (2010)
[5]
Conforti, M., Faenza, Y., Fiorini, S., Grappe, R., Tiwary, H.R.: Extended formulations, non-negative factorizations and randomized communication protocols. http://arxiv.org/abs/1105.4127 (2011)
[6]
Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Working paper (2011)
[7]
Goemans, M.: Smallest compact formulation for the permutahedron. http://math.mit.edu/~goemans/PAPERS/permutahedron.pdf (2009)
[8]
Hindry, M., Silverman, J.H.: Diophantine Geometry: An Introduction, 1st edn. Springer, Berlin (2000)
[9]
Hungerford, T.W.: Algebra. Graduate Texts in Mathematics. Springer, New York (1974)
[10]
Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2---7 (2011)
[11]
Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations. In: Proceedings of the 15th Conference on Integer Programming and Combinatorial Optimization (2011, to appear)
[12]
Lang, S.: Algebra, Graduate Texts in Mathematics. Springer, Berlin (2002)
[13]
Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119---128 (1991)
[14]
Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations. http://arxiv.org/abs/1105.0036 (2011)
[15]
Stewart, I.: Galois Theory, 3rd edn. Chapman & Hall/CRC Mathematics. Chapman & Hall/CRC, Boca Raton (2004)
[16]
Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer programs. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958---2008, pp. 431---502. Springer, Berlin (2010)
[17]
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441---466 (1991)

Cited By

View all
  1. Extended Formulations for Polygons

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Discrete & Computational Geometry
    Discrete & Computational Geometry  Volume 48, Issue 3
    October 2012
    294 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 October 2012

    Author Tags

    1. Extended formulations
    2. Lower bound
    3. Polygon
    4. Polytope

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Further -Complete Problems with PSD Matrix FactorizationsFoundations of Computational Mathematics10.1007/s10208-023-09610-124:4(1225-1248)Online publication date: 1-Aug-2024
    • (2019)Euclidean Distance Matrices and Separations in Communication Complexity TheoryDiscrete & Computational Geometry10.1007/s00454-018-9988-x61:3(653-660)Online publication date: 1-Apr-2019
    • (2018)Algorithms for positive semidefinite factorizationComputational Optimization and Applications10.1007/s10589-018-9998-x71:1(193-219)Online publication date: 1-Sep-2018
    • (2018)Extension Complexity and Realization Spaces of HypersimplicesDiscrete & Computational Geometry10.1007/s00454-017-9925-459:3(621-642)Online publication date: 1-Apr-2018
    • (2017)Equivariant Semidefinite Lifts of Regular PolygonsMathematics of Operations Research10.1287/moor.2016.081342:2(472-494)Online publication date: 1-May-2017
    • (2017)The Matching Polytope has Exponential Extension ComplexityJournal of the ACM10.1145/312749764:6(1-19)Online publication date: 28-Sep-2017
    • (2016)Heuristics for exact nonnegative matrix factorizationJournal of Global Optimization10.1007/s10898-015-0350-z65:2(369-400)Online publication date: 1-Jun-2016
    • (2016)Common Information and Unique DisjointnessAlgorithmica10.1007/s00453-016-0132-076:3(597-629)Online publication date: 1-Nov-2016
    • (2015)The matching polytope does not admit fully-polynomial size relaxation schemesProceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms10.5555/2722129.2722186(837-846)Online publication date: 4-Jan-2015
    • (2015)The Matching Problem Has No Fully Polynomial Size Linear Programming Relaxation SchemesIEEE Transactions on Information Theory10.1109/TIT.2015.246586461:10(5754-5764)Online publication date: 1-Oct-2015
    • Show More Cited By

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media