Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3120137.3120189guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Mixtures of large margin nearest neighbor classifiers

Published: 23 September 2013 Publication History

Abstract

The accuracy of the k-nearest neighbor algorithm depends on the distance function used to measure similarity between instances. Methods have been proposed in the literature to learn a good distance function from a labelled training set. One such method is the large margin nearest neighbor classifier that learns a global Mahalanobis distance. We propose a mixture of such classifiers where a gating function divides the input space into regions and a separate distance function is learned in each region in a lower dimensional manifold. We show that such an extension improves accuracy and allows visualization.

References

[1]
Xing, P.E., Ng, A.Y., Jordan, M.I., Russell, S.: Distance Metric Learning, with Application to Clustering with Side-Information. In: Advances in Neural Information Processing Systems 15, pp. 505-512. MIT Press, Cambridge (2002)
[2]
Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood Components Analysis. In: Advances in Neural Information Processing Systems 17, pp. 513-520. MIT Press (2004)
[3]
Salakhutdinov, R., Hinton, G.: Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. In: 11th International Conference on Artificial Intelligence and Statistics, vol. 2, pp. 412-419 (2007)
[4]
Frome, A., Singer, Y., Malik, J.: Image Retrieval and Classification Using Local Distance Functions. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 417-424. MIT Press, Cambridge (2007)
[5]
Frome, A., Singer, Y., Sha, F., Malik, J.: Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification. In: 11st IEEE International Conference on Computer Vision, pp. 1-8 (2007)
[6]
Chang, H., Yeung, D.Y.: Locally Smooth Metric Learning with Application to Image Retrieval. In: 11th IEEE International Conference on Computer Vision, pp. 1-7 (2007)
[7]
Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-Theoretic Metric Learning. In: 24th International Conference on Machine Learning, pp. 209-216 (2007)
[8]
Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research 10, 207-244 (2009)
[9]
Weinberger, K.Q., Saul, L.K.: Fast Solvers and Efficient Implementations for Distance Metric Learning. In: 25th International Conference on Machine Learning, pp. 1160-1167 (2008)
[10]
Torresani, L., Lee, K.C.: Large Margin Component Analysis. In: Advances in Neural Information Processing Systems, vol. 19, pp. 1385-1392 (2007)
[11]
Malisiewicz, T., Efros, A.A.: Recognition by Association via Learning Per-Exemplar Distances. In: 21st IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8 (2008)
[12]
Zhan, D.C., Li, M., Li, Y.F., Zhou, Z.H.: Learning Instance Specific Distances Using Metric Propagation. In: 26th International Conference on Machine Learning, pp. 1225-1232 (2009)
[13]
Chen, Q., Sun, S.: Hierarchical Large Margin Nearest Neighbor Classification. In: 20th International Conference on Pattern Recognition. 906-909 (2010)
[14]
Noh, Y.K., Zhang, B.T., Lee, D.D.: Generative Local Metric Learning for Nearest Neighbor Classification. In: Advances in Neural Information Processing Systems 23, pp. 1822-1830. MIT Press (2010)
[15]
Chang, C.C.: A Boosting Approach for Supervised Mahalanobis Distance Metric Learning. Pattern Recognition 45(2), 844-862 (2012)
[16]
Bunte, K., Schneider, P., Hammer, B., Schleif, F.M., Villmann, T., Biehl, M.: Limited Rank Matrix Learning, Discriminative Dimension Reduction and Visualization. Neural Networks 26, 159-173 (2012)
[17]
Wang, Y., Woznica, A., Kalousis, A.: Parametric Local Metric Learning for Nearest Neighbor Classification. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1610-1618. MIT Press (2012)
[18]
Wu, L., Hoi, S.C.H., Jin, R., Zhu, J., Yu, N.: Learning Bregman Distance Functions for Semi-Supervised Clustering. IEEE Transactions on Knowledge and Data Engineering 24, 478-491 (2012)
[19]
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive Mixtures of Experts. Neural Computation 3, 79-87 (1991)
[20]
Gönen, M., Alpaydın, E.: Localized Multiple Kernel Learning. In: 25th International Conference on Machine Learning, pp. 352-359 (2008)
[21]
Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml/
[22]
Chang, C.C., Lin, C.J.: LIBSVM Data: Classification, Regression, and Multi-label (2011), http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
[23]
Sonnenburg, S., Ong, C.S., Henschel, S., Braun, M.: Machine Learning Data Set Repository (2011), http://mldata.org/
[24]
Alpaydın, E.: Combined 5×2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11, 1885-1892 (1999)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECMLPKDD'13: Proceedings of the 2013th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part II
September 2013
688 pages
ISBN:9783642409905
  • Editors:
  • Hendrik Blockeel,
  • Kristian Kersting,
  • Siegfried Nijssen,
  • Filip Železný

Sponsors

  • XRCE: Xerox Research Centre Europe
  • Winton Capital Management: Winton Capital Management
  • Cisco Systems
  • Yahoo! Labs
  • CSKI: Czech Society for Cybernetics and Informatics

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 September 2013

Author Tags

  1. distance learning
  2. margin loss
  3. nearest neighbor classifier

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media