Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Corrected quantum walk for optimal Hamiltonian simulation

Published: 01 November 2016 Publication History

Abstract

We describe a method to simulate Hamiltonian evolution on a quantum computer by repeatedly using a superposition of steps of a quantum walk, then applying a correction to the weightings for the numbers of steps of the quantum walk. This correction enables us to obtain complexity which is the same as the lower bound up to double-logarithmic factors for all parameter regimes. The scaling of the query complexity is O(τ log log τ/log log log τ + log(1/ε)) where τ := t||H||maxd, for ε the allowable error, t the time, ||H||max the max-norm of the Hamiltonian, and d the sparseness. This technique should also be useful for improving the scaling of the Taylor series approach to simulation, which is relevant to applications such as quantum chemistry.

References

[1]
R. P. Feynman (1982), Simulating physics with computers, International Journal of Theoretical Physics, 21, pp. 467-488.
[2]
S. Lloyd (1996), Universal quantum simulators, Science, 273, pp. 1073-1078.
[3]
D. Aharonov and A. Ta-Shma (2003), Adiabatic quantum state generation and statistical zero knowledge, in Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 20-29.
[4]
A. W. Harrow, A. Hassidim, and S. Lloyd (2009), Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, p. 150502.
[5]
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman (2003), Exponential algorithmic speedup by quantum walk, in Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 59-68.
[6]
A. M. Childs, R. Cleve, S. P. Jordan, and D. Yonge-Mallo (2009), Discrete-query quantum algorithm for NAND trees, Theory of Computing, 5, pp. 119-123.
[7]
A. M. Childs, R. Kothari, and R. D. Somma (2015), Quantum linear systems algorithm with exponentially improved dependence on precision, arXiv:1511.02306.
[8]
D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders (2007), Efficient quantum algorithms for simulating sparse Hamiltonians, Communications in Mathematical Physics, 270, pp. 359-371.
[9]
N. Wiebe, D. W. Berry, P. H_yer, and B. C. Sanders (2011), Simulating quantum dynamics on a quantum computer, Journal of Physics A: Mathematical and Theoretical, 44, p. 445308.
[10]
A. M. Childs (2010), On the relationship between continuous- and discrete-time quantum walk, Communications in Mathematical Physics, 294, pp. 581-603.
[11]
D. Poulin, A. Qarry, R. D. Somma, and F. Verstraete (2011), Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space, Phys. Rev. Lett., 106, p. 170501.
[12]
D. W. Berry and A. M. Childs (2012), Black-box Hamiltonian simulation and unitary implementation, Quantum Inf. Comput., 12, pp. 29-62.
[13]
A. M. Childs and N. Wiebe (2012), Hamiltonian simulation using linear combinations of unitary operations, Quantum Inf. Comput., 12, pp. 901-924.
[14]
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma (2014), Exponential improvement in precision for simulating sparse Hamiltonians, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 283-292.
[15]
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma (2015), Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett., 114, p. 090502.
[16]
D. W. Berry, A. M. Childs, and R. Kothari (2015), Hamiltonian simulation with nearly optimal dependence on all parameters, in Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pp. 792-809.
[17]
R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik (2016), Exponentially more precise quantum simulation of fermions in second quantization, New Journal of Physics, 18, p. 033032.
[18]
R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik (2015), Exponentially more precise quantum simulation of fermions II: Quantum chemistry in the CI matrix representation, arXiv:1506.01029.
[19]
G. H. Low and I. L. Chuang (2016), Optimal Hamiltonian simulation by quantum signal processing, arXiv:1606.02685.
[20]
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (2010), NIST Handbook of Mathematical Functions, Cambridge University Press (New York, NY).
[21]
R. D. Somma (2016), Quantum simulations of one dimensional quantum systems, Quantum Inf. Comput., 16, pp. 1125-1168.

Cited By

View all
  • (2022)Enhancing the Quantum Linear Systems Algorithm Using Richardson ExtrapolationACM Transactions on Quantum Computing10.1145/34906313:1(1-37)Online publication date: 14-Jan-2022
  • (2017)Improved hamiltonian simulation via a truncated taylor series and correctionsQuantum Information & Computation10.5555/3179553.317955817:7-8(623-635)Online publication date: 1-Jun-2017
  1. Corrected quantum walk for optimal Hamiltonian simulation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Quantum Information & Computation
    Quantum Information & Computation  Volume 16, Issue 15-16
    November 2016
    140 pages

    Publisher

    Rinton Press, Incorporated

    Paramus, NJ

    Publication History

    Published: 01 November 2016
    Revised: 01 September 2016
    Received: 18 June 2016

    Author Tags

    1. hamiltonian simulation
    2. quantum algorithms
    3. quantum query complexity
    4. quantum walk

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Enhancing the Quantum Linear Systems Algorithm Using Richardson ExtrapolationACM Transactions on Quantum Computing10.1145/34906313:1(1-37)Online publication date: 14-Jan-2022
    • (2017)Improved hamiltonian simulation via a truncated taylor series and correctionsQuantum Information & Computation10.5555/3179553.317955817:7-8(623-635)Online publication date: 1-Jun-2017

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media