Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Squash 2: a hierarchicial scalable quantum mapper considering ancilla sharing

Published: 01 March 2016 Publication History

Abstract

We present a multi-core reconfigurable quantum processor architecture, called Requp, which supports a hierarchical approach to mapping a quantum algorithm while sharing physical and logical ancilla qubits. Each core is capable of performing any quantum instruction. Moreover, we introduce a scalable quantum mapper, called Squash 2, which divides a given quantum circuit into a number of quantum modules--each module is divided into k parts such that each part will run on one of k available cores. Experimental results demonstrate that Squash 2 can handle large-scale quantum algorithms while providing an effective mechanism for sharing ancilla qubits.

References

[1]
M. J. Dousti and M. Pedram, "LEQA: latency estimation for a quantum algorithm mapped to a quantum circuit fabric," in Proceedings of the Design Automation Conference, Jun. 2013, pp. 42:1-42:7.
[2]
M. G. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz, "A fault tolerant, area efficient architecture for Shor's factoring algorithm," in Proceedings of the International Symposium on Computer Architecture, Jun. 2009, pp. 383-394.
[3]
H. Goudarzi, M. J. Dousti, A. Shafaei, and M. Pedram, "Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits," Quantum Information Processing, pp. 1267-1299, Jan. 2014.
[4]
M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge University Press, Dec. 2010.
[5]
S. E. Venegas-Andraca, Quantum walks for computer scientists. Morgan & Claypool Publishers, 2008.
[6]
M. J. Dousti, A. Shafaei, and M. Pedram, "Squash: A scalable quantum mapper considering ancilla sharing," in Proceedings of the Great Lakes Symposium on VLSI, May 2014, pp. 117-122.
[7]
V. V. Shende and I. L. Markov, "On the CNOT-cost of TOFFOLI gates," Quantum Information & Computation, vol. 9, no. 5, pp. 461-486, 2009.
[8]
T. S. Metodi, D. D. Thaker, and A. W. Cross, "A quantum logic array microarchitecture: Scalable quantum data movement and computation," in Proceedings of the International Symposium on Microarchitecture, Nov. 2005, pp. 305-318.
[9]
D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong, "Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing," in Proceedings of the International Symposium on Computer Architecture, May 2006, pp. 378-390.
[10]
N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y. Yamamoto, "Layered architecture for quantum computing," Physical Review X, vol. 2, no. 3, pp. 031 007-1-031 007-27, 2012.
[11]
L. Kreger-Stickles and M. Oskin, "Microcoded architectures for ion-trap quantum computers," in Proceedings of the International Symposium on Computer Architecture, Jun. 2008, pp. 165-176.
[12]
M. J. Dousti and M. Pedram, "Minimizing the latency of quantum circuits during mapping to the ion-trap circuit fabric," in Proceedings of the Design, Automation, and Test in Europe, Mar. 2012, pp. 840-843.
[13]
N. E. Rainwater and S. J. Kapurch, NASA Systems Engineering Handbook (NASA/Sp-2007-6105 Rev1). National Aeronautics and Space Administration, Dec. 2003.
[14]
A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, and F. Chong, "Scaffold: Quantum programming language," Department of Computer Science, Princeton University, Tech. Rep. TR-934-12, June 2012.
[15]
A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. Chong, and M. Martonosi, "ScaffCC: a framework for compilation and analysis of quantum computing programs," in Proceedings of the Computing Frontiers, May 2014, pp. 1:1-1:10.
[16]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, "Quantum computers," Nature, vol. 464, no. 7285, pp. 45-53, 2010.
[17]
B. Zeng, A. Cross, and I. Chuang, "Transversality versus universality for additive quantum codes," IEEE Transactions on Information Theory, vol. 57, no. 9, pp. 6272-6284, 2011.
[18]
M. Tanaka and O. Tatebe, "Workflow scheduling to minimize data movement using multiconstraint graph partitioning," in Proceedings of the International Symposium on Cluster, Cloud and Grid Computing, May 2012, pp. 65-72.
[19]
G. Karypis and V. Kumar, "Multilevel algorithms for multi-constraint graph partitioning," in Supercomputing, Nov. 1998, pp. 1-17.
[20]
C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, "A formal approach to the scheduling problem in high level synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 4, pp. 464-475, 1991.
[21]
G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-Hill, Jan. 1994.
[22]
"Gurobi optimizer," http://www.gurobi.com, [Online; accessed October 5, 2015].
[23]
L. K. Grover, "A fast quantum mechanical algorithm for database search," in Proceedings of the Theory of Computing, May 1996, pp. 212-219.
[24]
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, "Exponential algorithmic speedup by a quantum walk," in Proceedings of the Theory of Computing, Jun. 2003, pp. 59-68.
[25]
J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, "Simulation of electronic structure hamiltonians using quantum computers," Molecular Physics, vol. 109, no. 5, pp. 735-750, 2011.
[26]
F. Magniez, M. Santha, and M. Szegedy, "Quantum algorithms for the triangle problem," SIAM Journal on Computing, vol. 37, no. 2, pp. 413-424, 2007.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Quantum Information & Computation
Quantum Information & Computation  Volume 16, Issue 3-4
March 2016
176 pages

Publisher

Rinton Press, Incorporated

Paramus, NJ

Publication History

Published: 01 March 2016
Revised: 05 October 2015
Received: 15 April 2015

Author Tags

  1. ancilla sharing
  2. mapping
  3. physical design
  4. quantum computing
  5. scalable algorithms

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media