Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Learning analytics tasks as services in smart classrooms

Published: 01 November 2018 Publication History

Abstract

A smart classroom integrates the different components in a traditional classroom, by using different technologies as artificial intelligence, ubiquitous, and cloud paradigms, among others, in order to improve the learning process. On the other hand, the learning analytics tasks are a set of tools that can be used to collect and analyze the data accumulated in a smart classroom. In this paper, we propose the definition of the learning analytics tasks as services, which can be invoked by the components of a smart classroom. We describe how to combine the cloud and multi-agent paradigms in a smart classroom, in order to provide academic services to the intelligent and non-intelligent agents in the smart classroom, to adapt and respond to the teaching and learning requirements of students. Additionally, we define a set of learning analytics tasks as services, which defines a knowledge feedback loop for the smart classroom, in order to improve the learning process in it, and we explain how they can be invoked and consumed by the agents in a smart classroom.

References

[1]
Valdiviezo, P., Cordero, J., Aguilar, J., Sánchez, M.: Conceptual design of a smart classroom base on multiagent system. In: de International Conference on Artificial Intelligence (ICAI'15), pp. 471---477 (2015)
[2]
Larusson, J.A., White, B.: Learning Analytics. From Research to Practice. Springer, New York (2014)
[3]
Riofrio, G., Encalada, E., Guaman, D., Aguilar, J.: Business intelligence applied to learning analytics in student-centered learning processes. In: XLI Conferencia Latinoamericana en Informática (CLEI), pp. 567---576 (2015)
[4]
Aguilar, J., Valdiviezo, P., Cordero, J., Riofrio, G., Encalada, E.: A general framework for learning analytic in a smart classroom. In: Valencia-García, R., et al. (eds.) Technologies and Innovation. Communications Computer and Information Science Series, vol. 658, pp. 214---225. Springer, Berlin (2016)
[5]
Cruz Benito, J., Therón, R., García Peñalvo, F.J., Lucas, E.P.: Discovering usage behaviors and engagement in an Educational Virtual World. Comput. Hum. Behav. 47, 18---25 (2015)
[6]
Muñoz Merino, P.J., Ruipérez Valiente, J.A., Alario Hoyos, C., Pérez Sanagustín, M., Kloos, C.D.: Precise effectiveness strategy for analyzing the effectiveness of students with educational resources and activities in MOOCs. Comput. Hum. Behav. 47, 108---118 (2015)
[7]
Gómez Aguilar, D.A., Hernández García, Á., García Peñalvo, F.J., Therón, R.: Tap into visual analysis of customization of grouping of activities in eLearning. Comput. Hum. Behav. 47, 60---67 (2015)
[8]
Hershkovitz, R., Nachmias, R.: Learning about online learning processes and students' motivation through web usage mining. Interdiscip. J. Knowl. Learn. Objects 5, 197---214 (2009)
[9]
García-Saiz, D., Zorrilla, M.: E-learning web miner: a data mining application to help instructors involved in virtual courses. In: 4th International Conference on Educational Data Mining, Netherlands, pp. 323---324 (2011)
[10]
Kalles, D., Pierrakeas, C.: Analyzing student performance in distance learning with genetic algorithms and decision trees. Appl. Artif. Intell. 20(8), 655---674 (2006)
[11]
Sánchez, M., Aguilar, J., Cordero, J., Valdiviezo-Díaz, P., Barba-Guamán, L., Chamba-Eras, L.: Cloud computing in smart educational environments: application in learning analytics as service. In: Rocha, A., Correia, M., Adeli, H., Reis, P., Mendonca, M. (eds.) New Advances in Information Systems and Technologies, pp. 993---1002. Springer, Berlin (2016)
[12]
Sánchez, M., Aguilar, J., Cordero, J., Valdiviezo, P.: Basic features of a reflective middleware for intelligent learning environment in the cloud (IECL). In: Asia-Pacific Conference on Computer Aided System Engineering (APCASE'15), pp. 1---6 (2015)
[13]
Sánchez, M., Aguilar, J., Cordero, J., Valdiviezo, P.: A smart learning environment based on cloud learning. Int. J. Adv. Inf. Sci. Technol. (IJAIST) 39(39), 39---52 (2015)
[14]
Valdiviezo-Díaz, P., Cordero, J., Reátegui, R., Aguilar, J.: A business intelligence model for online tutoring process. In: 45th Annual Frontiers in Education (FIE) Conference, pp. 2224---2232 (2015)
[15]
Kumar, S.A., Vijayalakshmi, M.: Efficiency of data mining techniques in edifying sector. Int. J. Adv. Found. Res. Comput. 1(8), 56---62 (2014)
[16]
Ahonen, T., Hadid, A., Pietikáinen, M.: Face recognition with local binary patterns. In: European Conference on Computer Vision. Springer, Berlin, pp. 469---481 (2004)
[17]
Xiao, R., Zhu, H., Sun, H., Tang, X.: Dynamic cascades for face detection. In: 11th IEEE International Conference on Computer Vision, pp. 1---8 (2007)
[18]
Guo, G., Li, S.Z., Chan, K.: Face recognition by support vector machines. In: Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 196---201 (2000)
[19]
Barba-Guamán, L., Quezada-Sarmiento, P., Calderon-Cordoba, C., Ordoñez López, J.: Detection of the characters from the license plate by cascade classifiers method. In: Future Technologies Conference (FTC), pp. 1---6 (2016)
[20]
Aguilar, J., Valdiviezo, P., Riofrio, G.: A general framework for intelligent recommender systems. Appl. Comput. Inf. 1---14 (2016)
[21]
Aguilar, J., Valdiviezo, P., Riofrío, G.: A fuzzy cognitive map like recommender system of learning resources. In: IEEE World Congress on Computational Intelligence (WCCI), pp. 1539---1546 (2016)
[22]
Chamba-Eras, L., Arruarte, A., Elorriaga, J.A.: Modelo de confianza para comunidades virtuales de aprendizaje. In: XVI Congreso Internacional de Informática Educativa 2011 (TISE), Santiago de Chile (2011)
[23]
Chamba-Eras, L., Aguilar, J.: Design of an augmented reality component from the theory of agents for smart classrooms. Revista IEEE América Latina 14(8), 3826---3837 (2016)
[24]
Salamó, M., Rodríguez, I., López Sánchez, M., Puig, A., Balocco, S., Taulé, M., Rodríguez, J.: GradeForeseer: recurso docente para la predicción de notas del alumnado de informática. In: XXI Jornadas de la Enseñanza Universitaria de la Informática, Universitat Oberta La Salle, pp. 89---96 (2015)

Cited By

View all
  • (2022)Effects and acceptance of precision education in an AI-supported smart learning environmentEducation and Information Technologies10.1007/s10639-021-10664-327:2(2013-2037)Online publication date: 1-Mar-2022
  • (2021)Learning analytics in Ecuador: a systematic review supported by statistical implicative analysisUniversal Access in the Information Society10.1007/s10209-020-00773-020:3(495-512)Online publication date: 1-Aug-2021
  • (2020)Performance analysis of the ubiquitous and emergent properties of an autonomic reflective middleware for smart citiesComputing10.1007/s00607-020-00799-5102:10(2199-2228)Online publication date: 1-Oct-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Universal Access in the Information Society
Universal Access in the Information Society  Volume 17, Issue 4
November 2018
203 pages
ISSN:1615-5289
EISSN:1615-5297
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 November 2018

Author Tags

  1. Ambient intelligences
  2. Cloud computing
  3. Learning analytics as service
  4. Smart classroom

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Effects and acceptance of precision education in an AI-supported smart learning environmentEducation and Information Technologies10.1007/s10639-021-10664-327:2(2013-2037)Online publication date: 1-Mar-2022
  • (2021)Learning analytics in Ecuador: a systematic review supported by statistical implicative analysisUniversal Access in the Information Society10.1007/s10209-020-00773-020:3(495-512)Online publication date: 1-Aug-2021
  • (2020)Performance analysis of the ubiquitous and emergent properties of an autonomic reflective middleware for smart citiesComputing10.1007/s00607-020-00799-5102:10(2199-2228)Online publication date: 1-Oct-2020
  • (2020)Smart Learning Environments: A Bibliometric AnalysisBlended Learning. Education in a Smart Learning Environment10.1007/978-3-030-51968-1_29(353-364)Online publication date: 24-Aug-2020
  • (2019)Experimental comparison of the diagnostic capabilities of classification and clustering algorithms for the QoS management in an autonomic IoT platformService Oriented Computing and Applications10.1007/s11761-019-00266-w13:3(199-219)Online publication date: 1-Sep-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media