Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3320516.3320717acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

Uniform convergence of sample average approximation with adaptive multiple importance sampling

Published: 09 December 2018 Publication History

Abstract

We study sample average approximations under adaptive importance sampling in which the sample densities may depend on previous random samples. Based on a generic uniform law of large numbers, we establish uniform convergence of the sample average approximation to the function being approximated. In the optimization context, we obtain convergence of the optimal value and optimal solutions of the sample average approximation.

References

[1]
Andrews, D. W. 1992. "Generic Uniform Convergence". Econometric Theory 8(02):241--257.
[2]
Billingsley, P. 1995. Probability and Measure. 3rd ed. John Wiley & Sons.
[3]
Chow, Y. S. 1967. "On a Strong Law of Large Numbers for Martingales". The Annals of Mathematical Statistics 38(2):610--610.
[4]
Chung, K. L. 1951. "The Strong Law of Large Numbers". In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, 341--352: University of California Press, Berkeley and Los Angeles.
[5]
Cornuet, J.-M., J.-M. Marin, A. Mira, and C. P. Robert. 2012. "Adaptive Multiple Importance Sampling". Scandinavian Journal of Statistics 39:798--812.
[6]
Dai, L., C. H. Chen, and J. R. Birge. 2000. "Convergence Properties of Two-Stage Stochastic Programming". Journal of Optimization Theory and Applications 106(3):489--509.
[7]
Dantzig, G. B., and P. W. Glynn. 1990. "Parallel Processors for Planning Under Uncertainty". Annals of Operations Research 22(1):1--21.
[8]
Duffie, D., and K. J. Singleton. 1993. "Simulated Moments Estimation of Markov Models of Asset Prices". Econometrica 61(4):929--952.
[9]
Dupačová, J., and R. Wets. 1988. "Asymptotic Behavior of Statistical Estimators and of Optimal Solutions of Stochastic Optimization Problems". The Annals of Statistics 1517--1549.
[10]
Feng, M., and J. Staum. 2015. "Green Simulation Designs for Repeated Experiments". In Proceedings of the 2015 Winter Simulation Conference, edited by L. Yilmaz. et al, 403--U3. Piscataway, New Jersey: IEEE.
[11]
Feng, M., and J. Staum. 2017. "Green Simulation: Reusing the Output of Repeated Experiments". ACM Transactions on Modeling and Computer Simulation 27(4):23:1--23:28.
[12]
Glynn, Peter W. and Infanger, G. 2013. "Simulation-Based Confidence Bounds for Two-Stage Stochastic Programs". Mathematical Programming 138(1):15--H.
[13]
Homem-de-Mello, T. 2008. "On Rates of Convergence for Stochastic Optimization Problems under Non-Independent and Identically Distributed Sampling". SIAM Journal on Optimization 19(2):524--551.
[14]
Infanger, G. 1992. "Monte Carlo (Importance) Sampling within a Benders Decomposition Algorithm for Stochastic Linear Programs". Annals of Operations Research 39(1):69--95.
[15]
Jenish, N., and I. R. Prucha. 2009. "Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields". Journal of Econometrics 150(1):86--98.
[16]
Korf, L., and R. J.-B. Wets. 2001. "Random LSC Functions: An Ergodic Theorem". Mathematics of Operations Research 26(2):421--445.
[17]
Maggiar, A., A. Wächter, I. S. Dolinskaya, and J. Staum. 2018. "A Derivative-Free Trust-Region Algorithm for the Optimization of Functions Smoothed via Gaussian Convolution Using Adaptive Multiple Importance Sampling". SIAM Journal on Optimization 28(2):1478--1507.
[18]
Marin, J.-M., P. Pudlo, and M. Sedki. 2014, May. "Consistency of the Adaptive Multiple Importance Sampling". arXiv:1211.2548v2.
[19]
Owen, A., and Y. Zhou. 2000. "Safe and Effective Importance Sampling". Journal of the American Statistical Association 95(449):135--143.
[20]
Royset, J. O., and E. Polak. 2004. "Implementable Algorithm for Stochastic Optimization Using Sample Average Approximations". Journal of Optimization Theory and Applications 122(1):157--184.
[21]
Rubinstein, R. Y., and A. Shapiro. 1993. Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. John Wiley & Sons.
[22]
Rubinstein, R. Y., and D. P. Kroese. 2017. Simulation and the Monte Carlo Method. 3rd ed. John Wiley & Sons.
[23]
Shapiro, A., and H. Xu. 2007. "Uniform Laws of Large Numbers for Set-Valued Mappings and Subdifferentials of Random Functions". Journal of Mathematical Analysis and Applications 325(2):1390--1399.
[24]
Shapiro, A., D. Dentcheva, and A. Ruszczmski. 2009. Lectures on Stochastic Programming: Modeling and Theory. Philadelphia: SIAM.
[25]
Van der Vaart, A. W. 2000. Asymptotic statistics, Volume 3. Cambridge University Press.
[26]
Veach, E., and L. J. Guibas. 1995. "Optimally Combining Sampling Techniques for Monte Carlo Rendering". In SIGGRAPH1995 Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, edited by S. G. Mair and R. Cook, 419--H8: ACM.
[27]
Xu, H. 2010. "Uniform Exponential Convergence of Sample Average Random Functions under General Sampling with Applications in Stochastic Programming". Journal of Mathematical Analysis and Applications 368:692--710.

Cited By

View all
  • (2020)Reusing simulation outputs of repeated experiments via likelihood ratio regressionProceedings of the Winter Simulation Conference10.5555/3466184.3466220(325-336)Online publication date: 14-Dec-2020

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '18: Proceedings of the 2018 Winter Simulation Conference
December 2018
4298 pages
ISBN:978153866570

Sponsors

Publisher

IEEE Press

Publication History

Published: 09 December 2018

Check for updates

Qualifiers

  • Research-article

Conference

WSC '18
Sponsor:
WSC '18: Winter Simulation Conference
December 9 - 12, 2018
Gothenburg, Sweden

Acceptance Rates

WSC '18 Paper Acceptance Rate 183 of 260 submissions, 70%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)1
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Reusing simulation outputs of repeated experiments via likelihood ratio regressionProceedings of the Winter Simulation Conference10.5555/3466184.3466220(325-336)Online publication date: 14-Dec-2020

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media