Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3367471.3367544guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Learning to interpret satellite images using wikipedia

Published: 10 August 2019 Publication History

Abstract

Despite recent progress in computer vision, fine-grained interpretation of satellite images remains challenging because of a lack of labeled training data. To overcome this limitation, we construct a novel dataset called WikiSatNet by pairing geo-referenced Wikipedia articles with satellite imagery of their corresponding locations. We then propose two strategies to learn representations of satellite images by predicting properties of the corresponding articles from the images. Leveraging this new multi-modal dataset, we can drastically reduce the quantity of human-annotated labels and time required for downstream tasks. On the recently released fMoW dataset, our pre-training strategies can boost the performance of a model pretrained on ImageNet by up to 4.5% in F1 score.

References

[1]
Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 2018.
[2]
Wenyuan Dai, Ou Jin, Gui-Rong Xue, Qiang Yang, and Yong Yu. Eigentransfer: a unified framework for transfer learning. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 193-200. ACM, 2009.
[3]
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009.
[4]
Junwei Han, Dingwen Zhang, Gong Cheng, Nian Liu, and Dong Xu. Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Processing Magazine, 35(1):84-100, 2018.
[5]
Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261-2269. IEEE, 2017.
[6]
Neal Jean, Sherrie Wang, George Azzari, David Lobell, and Stefano Ermon. Tile2vec: Unsupervised representation learning for remote sensing data. arXiv preprint arXiv:1805.02855, 2018.
[7]
Pascal Kaiser, Jan Dirk Wegner, Aurélien Lucchi, Martin Jaggi, Thomas Hofmann, and Konrad Schindler. Learning aerial image segmentation from online maps. IEEE Transactions on Geoscience and Remote Sensing, 55(11):6054-6068, 2017.
[8]
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[9]
Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, pages 3581-3589, 2014.
[10]
Quoc Le and Thomas Mikolov. Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053, 2014.
[11]
Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. Predicting deep zero-shot convolutional neural networks using textual descriptions. In Proceedings of the IEEE International Conference on Computer Vision, pages 4247-4255, 2015.
[12]
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer vision, pages 740-755. Springer, 2014.
[13]
Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised pretraining. arXiv preprint arXiv:1805.00932, 2018.
[14]
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781, 2013.
[15]
George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
[16]
USDA-NASS Cropland Data NAIP. Published crop-specific data layer. USDA-NASS, Washington, DC, 2016.
[17]
Barak Oshri, Annie Hu, Peter Adelson, Xiao Chen, Pascaline Dupas, Jeremy Weinstein, Marshall Burke, David Lobell, and Stefano Ermon. Infrastructure quality assessment in africa using satellite imagery and deep learning. In Proc. 24th SIGKDD Conference, 2018.
[18]
Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345-1359, 2010.
[19]
Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning: transfer learning from unlabeled data. In Proceedings of the 24th international conference on Machine learning, pages 759-766. ACM, 2007.
[20]
Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré. Snorkel: Rapid training data creation with weak supervision. arXiv preprint arXiv:1711.10160, 2017.
[21]
Hongyu Ren, Russell Stewart, Jiaming Song, Volodymyr Kuleshov, and Stefano Ermon. Adversarial constraint learning for structured prediction. CoRR, abs/1805.10561, 2018.
[22]
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015.
[23]
Evan Sheehan, Chenlin Meng, Matthew Tan, Burak Uzkent, Neal Jean, David Lobell, Marshall Burke, and Stefano Ermon. Predicting economic development using geolocated wikipedia articles. In Proc. 25th SIGKDD Conference, 2019.
[24]
Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and domain knowledge. In AAAI, 2017.
[25]
Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. Learning two-branch neural networks for image-text matching tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
[26]
Wikipedia. Wikipedia, the free encyclopedia, 2018.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
IJCAI'19: Proceedings of the 28th International Joint Conference on Artificial Intelligence
August 2019
6589 pages
ISBN:9780999241141

Sponsors

  • Sony: Sony Corporation
  • Huawei Technologies Co. Ltd.: Huawei Technologies Co. Ltd.
  • Baidu Research: Baidu Research
  • The International Joint Conferences on Artificial Intelligence, Inc. (IJCAI)
  • Lenovo: Lenovo

Publisher

AAAI Press

Publication History

Published: 10 August 2019

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media