Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3367471.3367552guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Spectral perturbation meets incomplete multi-view data

Published: 10 August 2019 Publication History

Abstract

Beyond existing multi-view clustering, this paper studies a more realistic clustering scenario, referred to as incomplete multi-view clustering, where a number of data instances are missing in certain views. To tackle this problem, we explore spectral perturbation theory. In this work, we show a strong link between perturbation risk bounds and incomplete multi-view clustering. That is, as the similarity matrix fed into spectral clustering is a quantity bounded in magnitude O(1), we transfer the missing problem from data to similarity and tailor a matrix completion method for incomplete similarity matrix. Moreover, we show that the minimization of perturbation risk bounds among different views maximizes the final fusion result across all views. This provides a solid fusion criteria for multi-view data. We motivate and propose a Perturbation-oriented Incomplete multi-view Clustering (PIC) method. Experimental results demonstrate the effectiveness of the proposed method.

References

[1]
Deng Cai and Xinlei Chen. Large scale spectral clustering via landmark-based sparse representation. IEEE Trans. Cybern., 45(8):1669-1680, 2015.
[2]
Deng Cai, Xiaofei He, Xiaoyun Wu, and Jiawei Han. Non-negative matrix factorization on manifold. In ICDM, pages 63-72, 2008.
[3]
Yang Cai, Yuanyuan Jiao, Wenzhang Zhuge, Hong Tao, and Chenping Hou. Partial multiview spectral clustering. Neurocomputing, 311:316-324, 2018.
[4]
Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925-936, 2010.
[5]
Guoqing Chao, Shiliang Sun, and Jinbo Bi. A survey on multi-view clustering. arXiv preprint arXiv:1712.06246, 2017.
[6]
Menglei Hu and Songcan Chen. Doubly aligned incomplete multi-view clustering. In IJCAI, pages 2262-2268, 2018.
[7]
Shudong Huang, Zhao Kang, Ivor W Tsang, and Zenglin Xu. Auto-weighted multi-view clustering via kernelized graph learning. Pattern Recognit., 88:174-184, 2019.
[8]
Blake Hunter and Thomas Strohmer. Performance analysis of spectral clustering on compressed, incomplete and inaccurate measurements. arXiv preprint arXiv:1011.0997, 2010.
[9]
Shao-Yuan Li, Yuan Jiang, and Zhi-Hua Zhou. Partial multi-view clustering. In AAAI, pages 1968- 1974, 2014.
[10]
Yeqing Li, Feiping Nie, Heng Huang, and Junzhou Huang. Large-scale multi-view spectral clustering via bipartite graph. In AAAI, pages 2750-2756, 2015.
[11]
Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Lei Wang, Chang Tang, Jianping Yin, Dinggang Shen, Huaimin Wang, and Wen Gao. Late fusion incomplete multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell., pages 1-14, 2018.
[12]
Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications, 2(12):871-898, 1991.
[13]
Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, pages 849-856, 2001.
[14]
Feiping Nie, Xiaoqian Wang, Michael I. Jordan, and Heng Huang. The constrained Laplacian rank algorithm for graph-based clustering. In AAAI, pages 1969-1976, 2016.
[15]
Feiping Nie, Lai Tian, and Xuelong Li. Multiview clustering via adaptively weighted procrustes. In KDD, pages 2022-2030, 2018.
[16]
Weixiang Shao, Lifang He, and Philip S. Yu. Multiple incomplete views clustering via weighted nonnegative matrix factorization with l2,1 regularization. In ECML-PKDD, pages 318-334, 2015.
[17]
G. W. Stewart and Jiguang Sun. Matrix perturbation theory. Academic Press, 1990.
[18]
Hong Tao, Chenping Hou, Xinwang Liu, Tongliang Liu, Dongyun Yi, and Jubo Zhu. Reliable multiview clustering. In AAAI, pages 4123-4130, 2018.
[19]
Qianqian Wang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, and Yun Fu. Partial multiview clustering via consistent GAN. In ICDM, pages 1290-1295, 2018.
[20]
Hao Wang, Yan Yang, and Bing Liu. Gmc: Graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng., pages 1-14, 2019.
[21]
Jie Wen, Yong Xu, and Hong Liu. Incomplete multiview spectral clustering with adaptive graph learning. IEEE Trans. Cybern., pages 1-12, 2018.
[22]
Chang Xu, Dacheng Tao, and Chao Xu. Multi-view learning with incomplete views. IEEE Trans Image Process., 24(12):5812-5825, 2015.
[23]
Yan Yang and Hao Wang. Multiview clustering: A survey. Big Data Mining and Analytics, 1(2):83-107, 2018.
[24]
Qiyue Yin, Shu Wu, and Liang Wang. Unified subspace learning for incomplete and unlabeled multiview data. Pattern Recognit., 67:313-327, 2017.
[25]
Handong Zhao, Hongfu Liu, and Yun Fu. Incomplete multi-modal visual data grouping. In IJCAI, pages 2392-2398, 2016.
[26]
Liang Zhao, Zhikui Chen, Yi Yang, Z Jane Wang, and Victor CM Leung. Incomplete multiview clustering via deep semantic mapping. Neurocomputing, 275:1053-1062, 2018.
[27]
Wei Zhou, Hao Wang, and Yan Yang. Consensus graph learning for incomplete multi-view clustering. In PAKDD, pages 529-540, 2019.
[28]
Xinzhong Zhu, Xinwang Liu, Miaomiao Li, En Zhu, Li Liu, Zhiping Cai, Jianping Yin, and Wen Gao. Localized incomplete multiple kernel k-means. In IJCAI, pages 3271-3277, 2018.
[29]
Linlin Zong, Xianchao Zhang, Xinyue Liu, and Hong Yu. Weighted multi-view spectral clustering based on spectral perturbation. In AAAI, pages 4621- 4628, 2018.

Cited By

View all
  • (2024)A Survey and an Empirical Evaluation of Multi-View Clustering ApproachesACM Computing Surveys10.1145/364510856:7(1-38)Online publication date: 8-Feb-2024
  • (2024)Manifold-Based Incomplete Multi-View Clustering via Bi-Consistency GuidanceIEEE Transactions on Multimedia10.1109/TMM.2024.340565026(10001-10014)Online publication date: 1-Jan-2024
  • (2024)Robust Tensor Recovery for Incomplete Multi-View ClusteringIEEE Transactions on Multimedia10.1109/TMM.2023.332149926(3856-3870)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
IJCAI'19: Proceedings of the 28th International Joint Conference on Artificial Intelligence
August 2019
6589 pages
ISBN:9780999241141

Sponsors

  • Sony: Sony Corporation
  • Huawei Technologies Co. Ltd.: Huawei Technologies Co. Ltd.
  • Baidu Research: Baidu Research
  • The International Joint Conferences on Artificial Intelligence, Inc. (IJCAI)
  • Lenovo: Lenovo

Publisher

AAAI Press

Publication History

Published: 10 August 2019

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Survey and an Empirical Evaluation of Multi-View Clustering ApproachesACM Computing Surveys10.1145/364510856:7(1-38)Online publication date: 8-Feb-2024
  • (2024)Manifold-Based Incomplete Multi-View Clustering via Bi-Consistency GuidanceIEEE Transactions on Multimedia10.1109/TMM.2024.340565026(10001-10014)Online publication date: 1-Jan-2024
  • (2024)Robust Tensor Recovery for Incomplete Multi-View ClusteringIEEE Transactions on Multimedia10.1109/TMM.2023.332149926(3856-3870)Online publication date: 1-Jan-2024
  • (2023)Latent Heterogeneous Graph Network for Incomplete Multi-View LearningIEEE Transactions on Multimedia10.1109/TMM.2022.315459225(3033-3045)Online publication date: 1-Jan-2023
  • (2021)Self-Representation Subspace Clustering for Incomplete Multi-view DataProceedings of the 29th ACM International Conference on Multimedia10.1145/3474085.3475379(2726-2734)Online publication date: 17-Oct-2021
  • (2021)Structural Deep Incomplete Multi-view Clustering NetworkProceedings of the 30th ACM International Conference on Information & Knowledge Management10.1145/3459637.3482192(3538-3542)Online publication date: 26-Oct-2021

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media