Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3458064.3458166acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

A faster exponential time algorithm for bin packing with a constant number of bins via additive combinatorics

Published: 21 March 2021 Publication History

Abstract

In the Bin Packing problem one is given n items with weights w1, …, wn and m bins with capacities c1, …, cm. The goal is to find a partition of the items into sets S1, …, Sm such that w(Sj) ⩽ cj for every bin j, where w(X) denotes ΣiX wi.
Björklund, Husfeldt and Koivisto (SICOMP 2009) presented an O*(2n) time algorithm for Bin Packing. In this paper, we show that for every m ∈ N there exists a constant σm > 0 such that an instance of Bin Packing with m bins can be solved in O(2(1−σm)n) randomized time. Before our work, such improved algorithms were not known even for m equals 4.
A key step in our approach is the following new result in Littlewood-Offord theory on the additive combinatorics of subset sums: For every δ > 0 there exists an ε > 0 such that if |{X ⊆ {1, …, n} : w(X) = v}| ⩾ 2(1−ε)n for some v then |{w(X) : X ⊆ {1, …, n}}| ⩽ 2δn.

References

[1]
A. Abboud. Fine-Grained Reductions and Quantum Speedups for Dynamic Programming. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132, pages 8:1--8:13, 2019.
[2]
P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof. Subset Sum in the Absence of Concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, pages 48--61, 2015.
[3]
P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof. Dense Subset Sum May Be the Hardest. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, pages 13:1--13:14, 2016.
[4]
P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof. Sharper upper bounds for unbalanced uniquely decodable code pairs. IEEE Trans. Inf. Theory, 64(2):1368--1373, 2018.
[5]
N. Bansal, S. Garg, J. Nederlof, and N. Vyas. Faster Space-Efficient Algorithms for Subset Sum, k-Sum, and Related Problems. SIAM J. Comput., 47(5):1755--1777, 2018.
[6]
A. Becker, J. Coron, and A. Joux. Improved Generic Algorithms for Hard Knapsacks. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 364--385, 2011.
[7]
A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 67--74, 2007.
[8]
A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Counting Paths and Packings in Halves. In Algorithms - ESA 2009, 17th Annual European Symposium, volume 5757, pages 578--586, 2009.
[9]
A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-Exclusion. SIAM J. Comput., 39(2):546--563, 2009.
[10]
A. Björklund, P. Kaski, and I. Koutis. Directed Hamiltonicity and Out-Branchings via Generalized Laplacians. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 91:1--91:14, 2017.
[11]
J. M. Byskov. Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett., 32(6):547--556, 2004.
[12]
E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin Packing Approximation Algorithms: Survey and Classification, pages 455--531. Springer New York, New York, NY, 2013.
[13]
I. Csiszár and P. C. Shields. Information theory and statistics: A tutorial. Now Publishers Inc, 2004.
[14]
M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1--41:24, 2016.
[15]
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
[16]
M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems: Mathematical models and exact algorithms. European Journal of Operational Research, 255(1):1--20, 2016.
[17]
I. Diakonikolas and R. A. Servedio. Improved approximation of linear threshold functions. Comput. Complex., 22(3):623--677, 2013.
[18]
S. Eilon and N. Christofides. The loading problem. Management Science, 17(5):259--268, 1971.
[19]
K. Eisemann. The trim problem. Management Science, 3(3):279--284, 1957.
[20]
M. Etscheid, S. Kratsch, M. Mnich, and H. Röglin. Polynomial kernels for weighted problems. Journal of Computer and System Sciences, 84:1--10, 2017.
[21]
F. V. Fomin and P. Kaski. Exact Exponential Algorithms. Commun. ACM, 56(3):80--88, 2013.
[22]
F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2010.
[23]
A. Frank and É. Tardos. An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica, 7(1):49--65, 1987.
[24]
M. X. Goemans and T. Rothvoß. Polynomiality for Bin Packing with a Constant Number of Item Types. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 830--839, 2014.
[25]
A. Golovnev, A. S. Kulikov, and I. Mihajlin. Families with infants: A general approach to solve hard partition problems. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, volume 8572, pages 551--562, 2014.
[26]
A. Golovnev, A. S. Kulikov, and I. Mihajlin. Families with Infants: Speeding Up Algorithms for NP-Hard Problems Using FFT. ACM Trans. Algorithms, 12(3):35:1--35:17, 2016.
[27]
J. R. Griggs. Database security and the distribution of Subset Sums in Rm. In Graph Theory and Combinatorial Biology, 1998.
[28]
G. Halász. Estimates for the concentration function of combinatorial number theory and probability. Periodica Mathematica Hungarica, 8(3--4):197--211, 1977.
[29]
R. Hoberg and T. Rothvoss. A Logarithmic Additive Integrality Gap for Bin Packing. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 2616--2625, 2017.
[30]
E. Horowitz and S. Sahni. Computing Partitions with Applications to the Knapsack Problem. J. ACM, 21(2):277--292, 1974.
[31]
K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39--49, 2013.
[32]
D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technology, 1973.
[33]
D. M. Kane and R. Williams. Super-linear gate and super-quadratic wire lower bounds for depth-two and depth-three threshold circuits. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 633--643, 2016.
[34]
L. V. Kantorovich. Mathematical methods of organizing and planning production. Management science, English Translation of a 1939 paper written in Russian, 6(4):366--422, 1960.
[35]
N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pages 312--320. IEEE, 1982.
[36]
J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006.
[37]
M. Koivisto. Partitioning into sets of bounded cardinality. In Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, volume 5917, pages 258--263, 2009.
[38]
R. Krauthgamer and O. Trabelsi. The Set Cover Conjecture and Subgraph Isomorphism with a Tree Pattern. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019), volume 126, pages 45:1--45:15, 2019.
[39]
C. Lenté, M. Liedloff, A. Soukhal, and V. T'Kindt. On an extension of the Sort & Search method with application to scheduling theory. Theor. Comput. Sci., 511:13--22, 2013.
[40]
J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. Journal of the London Mathematical Society, s1-13(4):288--295, 1938.
[41]
S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. Wiley Series in Discrete Mathematics and Optimization. Wiley, 1990.
[42]
R. Meka, O. Nguyen, and V. Vu. Anti-concentration for polynomials of independent random variables. Theory Comput., 12(1):1--17, 2016.
[43]
M. Mucha, J. Nederlof, J. Pawlewicz, and K. Węgrzycki. Equal-Subset-Sum Faster Than the Meet-in-the-Middle. In 27th Annual European Symposium on Algorithms, ESA 2019, volume 144, pages 73:1--73:16, 2019.
[44]
J. Nederlof. Finding Large Set Covers Faster via the Representation Method. In 24th Annual European Symposium on Algorithms, ESA 2016, volume 57 of LIPIcs, pages 69:1--69:15, 2016.
[45]
J. Nederlof, J. Pawlewicz, C. M. F. Swennenhuis, and K. Węgrzycki. A Faster Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive Combinatorics. arXiv e-prints, page arXiv:2007.08204, July 2020.
[46]
J. Nederlof, E. J. van Leeuwen, and R. van der Zwaan. Reducing a target interval to a few exact queries. In Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, volume 7464, pages 718--727, 2012.
[47]
T. Rothvoß. Approximating Bin Packing within O(log OPT · log log OPT) Bins. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 20--29, 2013.
[48]
M. Rudelson and R. Vershynin. The Littlewood-Offord problem and invertibility of random matrices. Advances in Mathematics, 218(2):600 -- 633, 2008.
[49]
C. Schlegel and A. Grant. Coordinated multiuser communications. Springer, 2006.
[50]
T. Tao and V. H. Vu. Additive combinatorics, volume 105 of Cambridge studies in advanced mathematics. Cambridge University Press, 2007.
[51]
K. Tikhomirov. Singularity of random bernoulli matrices. Annals of Mathematics, 191(2):593--634, 2020.
[52]
H. C. A. van Tilborg. An upper bound for codes in a two-access binary erasure channel (corresp.). IEEE Trans. Inf. Theory, 24(1):112--116, 1978.
[53]
V. V. Williams and R. R. Williams. Subcubic Equivalences Between Path, Matrix, and Triangle Problems. J. ACM, 65(5):27:1--27:38, 2018.
[54]
M. Wiman. Improved Constructions of Unbalanced Uniquely Decodable Code Pairs, 2017. Bachelor Thesis KTH.

Cited By

View all
  • (2021)Improving Schroeppel and Shamir’s algorithm for subset sum via orthogonal vectorsProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451024(1670-1683)Online publication date: 15-Jun-2021
  1. A faster exponential time algorithm for bin packing with a constant number of bins via additive combinatorics

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SODA '21: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
      January 2021
      3063 pages
      ISBN:9781611976465
      • Program Chair:
      • Dániel Marx

      Sponsors

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 21 March 2021

      Check for updates

      Qualifiers

      • Research-article

      Conference

      SODA '21
      Sponsor:
      SODA '21: ACM-SIAM Symposium on Discrete Algorithms
      January 10 - 13, 2021
      Virginia, Virtual Event

      Acceptance Rates

      Overall Acceptance Rate 411 of 1,322 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 30 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)Improving Schroeppel and Shamir’s algorithm for subset sum via orthogonal vectorsProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451024(1670-1683)Online publication date: 15-Jun-2021

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media