Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3458064.3458181acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Approximating pathwidth for graphs of small treewidth

Published: 21 March 2021 Publication History

Abstract

We describe a polynomial-time algorithm which, given a graph G with treewidth t, approximates the pathwidth of G to within a ratio of [EQUATION]. This is the first algorithm to achieve an f(t)-approximation for some function f.
Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least th + 2 has treewidth at least t or contains a subdivision of a complete binary tree of height h + 1. The bound th + 2 is best possible up to a multiplicative constant. This result was motivated by, and implies (with c = 2), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant c such that every graph with pathwidth Ω(kc) has treewidth at least k or contains a subdivision of a complete binary tree of height k.
Our main technical algorithm takes a graph G and some (not necessarily optimal) tree decomposition of G of width t' in the input, and it computes in polynomial time an integer h, a certificate that G has pathwidth at least h, and a path decomposition of G of width at most (t' + 1)h + 1. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height h. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.

References

[1]
Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Discrete Methods, 8(2):277--284, 1987.
[2]
Dan Bienstock, Neil Robertson, Paul Seymour, and Robin Thomas. Quickly excluding a forest. J. Comb. Theory Ser. B, 52(2):274--283, 1991.
[3]
Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1--2):1--21, 1992.
[4]
Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305--1317, 1996.
[5]
Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, pages 196--227. Springer, Berlin, Heidelberg, 2012.
[6]
Hans L. Bodlaender and Fedor V. Fomin. Approximation of pathwidth of outerplanar graphs. J. Algorithms, 43(2):190--200, 2002.
[7]
Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358--402, 1996.
[8]
Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. A simple linear-time algorithm for finding path-decompositions of small width. Inform. Process. Lett., 57(4):197--203, 1996.
[9]
Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. J. ACM, 63(5):Article 40, 2016.
[10]
Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the excluded grid theorem. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1445--1464. SIAM, Philadelphia, 2019.
[11]
Wojciech Czerwiński, Wojciech Nadara, and Marcin Pilipczuk. Improved bounds for the excluded-minor approximation of treedepth. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms (ESA 2019), volume 144 of Leibniz Int. Proc. Inform. (LIPIcs), pages 34:1--34:13. Schloss Dagstuhl, Wadern, 2019. arXiv:1904.13077.
[12]
Nathaniel Dean. Open problems. In Neil Robertson and Paul Seymour, editors, Graph Structure Theory: Proceedings of a Joint Summer Research Conference on Graph Minors, volume 147 of Contemp. Math., pages 677--688. AMS, Providence, 1993.
[13]
Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, Heidelberg, 4th edition, 2010.
[14]
Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629--657, 2008.
[15]
Fedor V. Fomin and Dimitrios M. Thilikos. A 3-approximation for the pathwidth of Halin graphs. J. Discrete Alg., 4(4):499--510, 2006.
[16]
Jens Gusted. On the pathwidth of chordal graphs. Discrete Appl. Math., 45(3):233--248, 1993.
[17]
Michel Habib and Rolf H. Möhring. Treewidth of cocomparability graphs and a new order-theoretic parameter. Order, 11(1):47--60, 1994.
[18]
Ken-ichi Kawarabayashi and Benjamin Rossman. A polynomial excluded-minor approximation of treedepth. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 234--246. SIAM, Philadelphia, 2018.
[19]
Ton Kloks, Hans L. Bodlaender, Haiko Müller, and Dieter Kratsch. Computing treewidth and minimum fill-in: all you need are the minimal separators. In Thomas Lengauer, editor, Algorithms---ESA '93, volume 726 of Lect. Notes Comput. Sci., pages 260--271. Springer, Berlin, Heidelberg, 1993.
[20]
Ton Kloks, Dieter Kratsch, and Haiko Müller. Dominoes. In Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Graph-Theoretic Concepts in Computer Science, volume 903 of Lect. Notes Comput. Sci., pages 106--120. Springer, Berlin, Heidelberg, 1995.
[21]
Burkhard Monien and Ivan Hal Sudborough. Min Cut is NP-complete for edge weighted trees. Theor. Comput. Sci., 58(1):209--229, 1988.
[22]
Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph. J. Comb. Theory Ser. B, 41(1):92--114, 1986.
[23]
Petra Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.
  1. Approximating pathwidth for graphs of small treewidth

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SODA '21: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
      January 2021
      3063 pages
      ISBN:9781611976465
      • Program Chair:
      • Dániel Marx

      Sponsors

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 21 March 2021

      Check for updates

      Qualifiers

      • Research-article

      Conference

      SODA '21
      Sponsor:
      SODA '21: ACM-SIAM Symposium on Discrete Algorithms
      January 10 - 13, 2021
      Virginia, Virtual Event

      Acceptance Rates

      Overall Acceptance Rate 411 of 1,322 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 19
        Total Downloads
      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 08 Feb 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media