Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3470152.3470199acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Quantum Hoare logic with ghost variables

Published: 08 June 2021 Publication History

Abstract

Quantum Hoare logic allows us to reason about quantum programs. We present an extension of quantum Hoare logic that introduces "ghost variables" to extend the expressive power of pre-/postconditions. Ghost variables are variables that do not actually occur in the program and are allowed to have arbitrary quantum states (in a sense, they are existentially quantified), and be entangled with program variables. Ghost variables allow us to express properties such as the distribution of a program variable or the fact that a variable has classical content. And as a case study, we show how quantum Hoare logic with ghost variables can be used to prove the security of the quantum one-time pad.

References

[1]
Samson Abramsky and Bob Coecke. "A categorical semantics of quantum protocols". In: LICS '04. IEEE, 2004, pp. 415--425.
[2]
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. "Formal Certification of Code-Based Cryptographic Proofs". In: POPL 2009. ACM, 2009, pp. 90--101.
[3]
Nick Benton. "Simple Relational Correctness Proofs for Static Analyses and Program Transformations". In: POPL '04. ACM, 2004, pp. 14--25. isbn: 1-58113-729-X.
[4]
Garrett Birkhoff and John von Neumann. "The logic of quantum mechanics". In: Annals of Mathematics 37.823 (1936).
[5]
P. Oscar Boykin and Vwani Roychowdhury. "Optimal encryption of quantum bits". In: Phys. Rev. A 67 (4 2003), p. 042317.
[6]
R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. "Reasoning About Probabilistic Sequential Programs". In: Theor. Comput. Sci. 379.1-2 (July 2007), pp. 142--165. issn: 0304-3975.
[7]
Rohit Chadha, Paulo Mateus, and Amílcar Sernadas. "Reasoning About Imperative Quantum Programs". In: ENTCS 158 (May 2006), pp. 19--39. issn: 1571-0661.
[8]
Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. isbn: 110710422X.
[9]
Ellie D'Hondt and Prakash Panangaden. "Quantum Weakest Preconditions". In: Mathematical. Structures in Comp. Sci. 16.3 (June 2006), pp. 429--451. issn: 0960-1295.
[10]
Edsger W. Dijkstra. "Guarded commands, nondeterminacy and formal derivation of programs". In: Communications of the ACM 18.8 (Aug. 1975), pp. 453--457. issn: 0001-0782.
[11]
Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. "Proof rules for the correctness of quantum programs". In: Theoretical Computer Science 386.1 (2007), pp. 151--166. issn: 0304-3975.
[12]
Lov K. Grover. "A Fast Quantum Mechanical Algorithm for Database Search". In: STOC. 1996, pp. 212--219.
[13]
Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. "Quantum Algorithm for Linear Systems of Equations". In: Physical Review Letters 103.15 (2009).
[14]
J. I. den Hartog and E. P. de Vink. "Verifying probabilistic programs using a Hoare like logic". In: International Journal of Foundations of Computer Science 13.03 (2002). Special Issue: 5th Asian Computing Science Conference (ASIAN'99), pp. 315--340.
[15]
Charles Antony Richard Hoare. "An axiomatic basis for computer programming". In: Communications of the ACM 12.10 (1969), pp. 576--580. ISSN: 0001-0782.
[16]
Martin Hofmann and Mariela Pavlova. "Elimination of Ghost Variables in Program Logics". In: Trustworthy Global Computing. Ed. by Gilles Barthe and Cédric Fournet. Springer, 2008, pp. 1--20. ISBN: 978-3-540-78663-4.
[17]
Yoshihiko Kakutani. "A Logic for Formal Verification of Quantum Programs". In: ASIAN 2009. Ed. by Anupam Datta. Berlin, Heidelberg: Springer, 2009, pp. 79--93. ISBN: 978-3-642-10622-4.
[18]
Dexter Kozen. "A Probabilistic PDL". In: STOC '83. New York, NY, USA: ACM, 1983, pp. 291--297. ISBN: 0-89791-099-0. URL: http://doi.acm.org/10.1145/800061.808758.
[19]
Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Monographs in Computer Science. Springer, 2005.
[20]
Michele Mosca, Alain Tapp, and Ronald de Wolf. Private Quantum Channels and the Cost of Randomizing Quantum Information. arXiv:quant-ph/0003101. Mar. 2000.
[21]
Tobias Nipkow, Larry Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer, 2002.
[22]
Lyle Harold Ramshaw. "Formalizing the Analysis of Algorithms". https://apps.dtic.mil/dtic/tr/fulltext/u2/a086916. PhD thesis. Stanford University, 1979.
[23]
Peter W. Shor. "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". In: SIAM Review 41.2 (1999), pp. 303--332. URL: https://doi.org/10.1137/s0036144598347011.
[24]
Dominique Unruh. Quantum Hoare Logic with Ghost Variables. arXiv:1902.00325 [quant-ph]. Full version of this paper. 2019.
[25]
Dominique Unruh. "Quantum relational Hoare logic". In: Proc. ACM Program. Lang. (POPL proceedings) 3 (2019). Full version is arXiv:1802.03188 [quant-ph], 33:1--33:31. ISSN: 2475-1421.
[26]
M. S. Ying, R. Y. Duan, Y. Feng, and Z. F. Ji. In: Semantic Techniques in Quantum Computation. Ed. by S. Gay and I. Mackie. Cambridge University Press, 2010. Chap. Predicate transformer semantics of quantum programs, pp. 311--360.
[27]
Mingsheng Ying. "Floyd-Hoare Logic for Quantum Programs". In: ACM Trans. Program. Lang. Syst. 33.6 (2012), 19:1--19:49. ISSN: 0164-0925.

Cited By

View all
  • (2021)Quantum Hoare Logic with Classical VariablesACM Transactions on Quantum Computing10.1145/34568772:4(1-43)Online publication date: 21-Dec-2021
  • (2021)A quantum interpretation of bunched logic & quantum separation logicProceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science10.1109/LICS52264.2021.9470673(1-14)Online publication date: 29-Jun-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
LICS '19: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science
June 2019
784 pages

Sponsors

In-Cooperation

  • EACSL: European Association for Computer Science Logic
  • IEEE-CS\DATC: IEEE Computer Society

Publisher

IEEE Press

Publication History

Published: 08 June 2021

Check for updates

Qualifiers

  • Research-article

Conference

LICS '19
Sponsor:

Acceptance Rates

Overall Acceptance Rate 215 of 622 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)3
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Quantum Hoare Logic with Classical VariablesACM Transactions on Quantum Computing10.1145/34568772:4(1-43)Online publication date: 21-Dec-2021
  • (2021)A quantum interpretation of bunched logic & quantum separation logicProceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science10.1109/LICS52264.2021.9470673(1-14)Online publication date: 29-Jun-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media