Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3504035.3504323guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Semi-supervised biomedical translation with cycle wasserstein regression GANs

Published: 02 February 2018 Publication History

Abstract

The biomedical field offers many learning tasks that share unique challenges: large amounts of unpaired data, and a high cost to generate labels. In this work, we develop a method to address these issues with semi-supervised learning in regression tasks (e.g., translation from source to target). Our model uses adversarial signals to learn from unpaired data-points, and imposes a cycle-loss reconstruction error penalty to regularize mappings in either direction against one another. We first evaluate our method on synthetic experiments, demonstrating two primary advantages of the system: 1) distribution matching via the adversarial loss and 2) regularization towards invertible mappings via the cycle loss. We then show a regularization effect and improved performance when paired data is supplemented by additional unpaired data on two real biomedical regression tasks: estimating the physiological effect of medical treatments, and extrapolating gene expression (transcriptomics) signals. Our proposed technique is a promising initial step towards more robust use of adversarial signals in semi-supervised regression, and could be useful for other tasks (e.g., causal inference or modality translation) in the biomedical field.

References

[1]
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mane, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viegas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; and Zheng, X. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467 [cs]. arXiv: 1603.04467.
[2]
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein GAN. arXiv:1701.07875 [cs, stat]. arXiv: 1701.07875.
[3]
Bellemare, M. G.; Danihelka, I.; Dabney, W.; Mohamed, S.; Lakshminarayanan, B.; Hoyer, S.; and Munos, R. 2017. The Cramer Distance as a Solution to Biased Wasserstein Gradients. arXiv:1705.10743 [cs, stat]. arXiv: 1705.10743.
[4]
Broad Connectivity Map Team. 2016. L1000 connectivity map perturbational profiles from broad institute lincs center for transcriptomics lincs phase II.
[5]
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y. 2016. Recurrent Neural Networks for Multivariate Time Series with Missing Values. arXiv:1606.01865 [cs, stat]. arXiv: 1606.01865.
[6]
Choi, E.; Biswal, S.; Malin, B.; Duke, J.; Stewart, W. F.; and Sun, J. 2017. Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks. arXiv:1703.06490 [cs]. arXiv: 1703.06490.
[7]
D'Aragon, F.; Belley-Cote, E. P.; Meade, M. O.; Lauzier, F.; Adhikari, N. K.; Briel, M.; Lalu, M.; Kanji, S.; Asfar, P.; Turgeon, A. F.; et al. 2015. Blood pressure targets for vasopressor therapy: A systematic review. Shock 43(6):530-539.
[8]
Eisen, M. B.; Spellman, P. T.; Brown, P. O.; and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences 95(25):14863-14868.
[9]
Esteban, C.; Hyland, S. L.; and Rtsch, G. 2017. Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. arXiv:1706.02633 [cs, stat]. arXiv: 1706.02633.
[10]
Ghassemi, M.; Naumann, T.; Doshi-Velez, F.; Brimmer, N.; Joshi, R.; Rumshisky, A.; and Szolovits, P. 2014. Unfolding Physiological State: Mortality Modelling in Intensive Care Units. In Proc. of the 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD '14, 75-84. New York, NY, USA: ACM.
[11]
Ghassemi, M.; Wu, M.; Hughes, M. C.; Szolovits, P.; and Doshi-Velez, F. 2017. Predicting intervention onset in the ICU with switching state space models. AMIA Summits on Trans. Sci. Proc. 2017:82-91.
[12]
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative Adversarial Nets. In Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger, K. Q., eds., Advances in Neural Information Processing Systems 27. Curran Associates, Inc. 2672-2680.
[13]
Goodfellow, I. 2016. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160 [cs]. arXiv: 1701.00160.
[14]
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and Courville, A. 2017. Improved Training of Wasserstein GANs. arXiv:1704.00028 [cs, stat]. arXiv: 1704.00028.
[15]
Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2016. Image-to-image translation with conditional adversarial networks. CoRR abs/1611.07004.
[16]
Johnson, A. E.; Pollard, T. J.; Shen, L.; Lehman, L.-w. H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; and Mark, R. G. 2016. MIMIC-III, a freely accessible critical care database. Scientific Data 3.
[17]
Kingma, D. P., and Ba, J. 2014. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs]. arXiv: 1412.6980.
[18]
Lipton, Z. C.; Kale, D. C.; Elkan, C.; and Wetzel, R. 2015. Learning to Diagnose with LSTM Recurrent Neural Networks. arXiv:1511.03677 [cs]. arXiv: 1511.03677.
[19]
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng, A. Y. 2011. Multimodal deep learning.
[20]
Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; and Lee, H. 2016. Generative Adversarial Text to Image Synthesis. In PMLR, 1060-1069.
[21]
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X.; and Chen, X. 2016. Improved Techniques for Training GANs. In Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; and Garnett, R., eds., Advances in Neural Information Processing Systems 29. Curran Associates, Inc. 2234-2242.
[22]
Sohn, K.; Shang, W.; and Lee, H. 2014. Improved Multimodal Deep Learning with Variation of Information. In Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger, K. Q., eds., Advances in Neural Information Processing Systems 27. Curran Associates, Inc. 2141-2149.
[23]
Springenberg, J. T. 2015. Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks. arXiv:1511.06390 [cs, stat]. arXiv: 1511.06390.
[24]
Subramanian, A.; Narayan, R.; Corsello, S. M.; Peck, D. D.; Natoli, T. E.; Lu, X.; Gould, J.; Davis, J. F.; Tubelli, A. A.; Asiedu, J. K.; Lahr, D. L.; Hirschman, J. E.; Liu, Z.; Donahue, M.; Julian, B.; Khan, M.; Wadden, D.; Smith, I.; Lam, D.; Liberzon, A.; Toder, C.; Bagul, M.; Orzechowski, M.; Enache, O. M.; Piccioni, F.; Berger, A. H.; Shamji, A.; Brooks, A. N.; Vrcic, A.; Flynn, C.; Rosains, J.; Takeda, D.; Davison, D.; Lamb, J.; Ardlie, K.; Hogstrom, L.; Gray, N. S.; Clemons, P. A.; Silver, S.; Wu, X.; Zhao, W.-N.; Read-Button, W.; Wu, X.; Haggarty, S. J.; Ronco, L. V.; Boehm, J. S.; Schreiber, S. L.; Doench, J. G.; Bittker, J. A.; Root, D. E.; Wong, B.; and Golub, T. R. 2017. A Next Generation Connectivity Map: L1000 Platform And The First 1,000,000 Profiles. bioRxiv 136168.
[25]
Sundararajan, K.; Flabouris, A.; and Thompson, C. 2016. Diurnal variation in the performance of rapid response systems: the role of critical care servicesa review article. Journal of intensive care 4(1):15.
[26]
Suresh, H.; Szolovits, P.; and Ghassemi, M. 2017. The Use of Autoencoders for Discovering Patient Phenotypes. arXiv:1703.07004 [cs]. arXiv: 1703.07004.
[27]
Tobin, M. J. 2006. Principles and practice of mechanical ventilation. LWW.
[28]
Wu, M.; Ghassemi, M.; Feng, M.; Celi, L. A.; Szolovits, P.; and Doshi-Velez, F. 2017. Understanding vasopressor intervention and weaning: risk prediction in a public heterogeneous clinical time series database. J of the American Med Inform Assoc 24(3):488-495.
[29]
Yang, K. L., and Tobin, M. J. 1991. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. New England Journal of Medicine 324.
[30]
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv:1703.10593 [cs]. arXiv: 1703.10593.

Index Terms

  1. Semi-supervised biomedical translation with cycle wasserstein regression GANs
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        AAAI'18/IAAI'18/EAAI'18: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence
        February 2018
        8223 pages
        ISBN:978-1-57735-800-8

        Sponsors

        • Association for the Advancement of Artificial Intelligence

        Publisher

        AAAI Press

        Publication History

        Published: 02 February 2018

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 48
          Total Downloads
        • Downloads (Last 12 months)23
        • Downloads (Last 6 weeks)6
        Reflects downloads up to 25 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media