Understanding partial multi-label learning via mutual information
Abstract
Supplementary Material
- Download
- 147.89 KB
References
Recommendations
Semi-supervised partial label learning algorithm via reliable label propagation
AbstractPartial label learning (PLL) is a weakly supervised learning method that is able to predict one label as the correct answer from a given candidate label set. In PLL, when all possible candidate labels are as signed to real-world training examples, ...
Transductive Multilabel Learning via Label Set Propagation
The problem of multilabel classification has attracted great interest in the last decade, where each instance can be assigned with a set of multiple class labels simultaneously. It has a wide variety of real-world applications, e.g., automatic image ...
Maximum margin partial label learning
Partial label learning aims to learn from training examples each associated with a set of candidate labels, among which only one label is valid for the training example. The basic strategy to learn from partial label examples is disambiguation, i.e. by ...
Comments
Information & Contributors
Information
Published In
Publisher
Curran Associates Inc.
Red Hook, NY, United States
Publication History
Qualifiers
- Research-article
- Research
- Refereed limited
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0