A trainable spectral-spatial sparse coding model for hyperspectral image restoration
Abstract
Supplementary Material
- Download
- 3.26 MB
References
Index Terms
- A trainable spectral-spatial sparse coding model for hyperspectral image restoration
Recommendations
Adaptive Spatial-Spectral Dictionary Learning for Hyperspectral Image Restoration
Hyperspectral imaging is beneficial in a diverse range of applications from diagnostic medicine, to agriculture, to surveillance to name a few. However, hyperspectral images often suffer from degradation such as noise and low resolution. In this paper, ...
Spatial-Spectral Deep Residual Network for Hyperspectral Image Super-Resolution
AbstractRecently, single hyperspectral image super-resolution (SR) methods based on deep learning have been extensively studied. However, there has been limited technical development focusing on single hyperspectral image super-resolution due to the high-...
Hierarchical spatio-spectral fusion for hyperspectral image super resolution via sparse representation and pre-trained deep model
AbstractFusing a hyperspectral image (HSI) with a high resolution multispectral image (MSI) has been a highly attractive and effective approach for improving the spatial resolution of HSIs. However, most existing spatio-spectral fusion methods ...
Comments
Information & Contributors
Information
Published In
Publisher
Curran Associates Inc.
Red Hook, NY, United States
Publication History
Qualifiers
- Research-article
- Research
- Refereed limited
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0