DominoSearch: find layer-wise fine-grained N:M sparse schemes from dense neural networks
Abstract
Supplementary Material
- Download
- 177.95 KB
References
Index Terms
- DominoSearch: find layer-wise fine-grained N:M sparse schemes from dense neural networks
Recommendations
Image compressive sensing via Truncated Schatten-p Norm regularization
Low-rank property as a useful image prior has attracted much attention in image processing communities. Recently, a nonlocal low-rank regularization (NLR) approach toward exploiting low-rank property has shown the state-of-the-art performance in ...
Compressive sensing via nonlocal low-rank tensor regularization
The aim of Compressing sensing (CS) is to acquire an original signal, when it is sampled at a lower rate than Nyquist rate previously. In the framework of CS, the original signal is often assumed to be sparse and correlated in some domain. Recently, ...
Image Recovery based on Local and Nonlocal Regularizations
Recently, a nonlocal low-rank regularization based compressive sensing approach (NLR) which exploits structured sparsity of similar patches has shown the state-of-the-art performance in image recovery. However, NLR cannot efficiently preserve local ...
Comments
Information & Contributors
Information
Published In
Publisher
Curran Associates Inc.
Red Hook, NY, United States
Publication History
Qualifiers
- Research-article
- Research
- Refereed limited
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0