Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3578948.3578966acmotherconferencesArticle/Chapter ViewAbstractPublication PagesewsnConference Proceedingsconference-collections
Article

OpenIBC: Open-Source Wake-Up Receiver for Capacitive Intra-Body Communication

Published: 18 January 2023 Publication History

Abstract

Intra-Body Communication (IBC) uses the human body as a part of the physical transmission channel for a more efficient and secure on-body communication. Since its introduction in 1995, it has evolved into an alternative to traditional wired and wireless techniques, and was eventually included as human body communication (HBC) in the IEEE 802.15.6 standard for wireless body area networks (WBAN). In contrast to the ubiquitous radio-frequency identification (RFID) and near-field communication (NFC), IBC has, however, not reached the market yet, and possible applications remain underinvestigated. We present the OpenIBC project and a first open-source IBC receiver that is based on a repurposed off-the-shelf low-power RFID wake-up receiver front-end. In the evaluation, the prototype achieved a data rate of 4096 bit/s with a packet error rate of 320.0 × 10 −6 at a low power of 7.4 µW in listening mode and 8.4 µW when receiving data. The design files and software are made available to encourage researchers to replicate and improve on our work, and to explore potential applications that benefit from IBC.

References

[1]
Cho,H.,Kim,H.,Kim,M.,Jang,J.,Lee,Y.,Lee,K J.,Bae,J., and Yoo,H.-J. 2016. "A 79 pj/b 80 mb/s full-duplex transceiver and a 100 kb/s super-regenerative transceiver for body channel communication". In IEEE JSSC. vol. 51,pp. 310--317.
[2]
Chung,C.-C.,Chang,C.-T., and Lin,C.-Y. 2015. "A 1 mb/s-40 mb/s human body channel communication transceiver". In VLSI-DAT. pp. 1--4.
[3]
Finkenzeller,K. 2010. "RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and NearField Communication". In Online-ArXiV Preprint or similar.
[4]
Yongsu,L.,Hoi-Jun,Y. 2017. "A 274µw clock synchronized wireless body area network ic with super-regenerative rssi for biomedical adhoc network system". In IEEE EMBC. pp. 710--713.
[5]
Donker,J H. 2009. "The body as a communication medium". In Department of EMCS, 11th Conference on IT.
[6]
Kibret,B.,Teshome,A K., and Lai,D T H. 2014. "Human body as antenna and its effect on human body communications". In Progress In Electromagnetics Research (PIER). vol. 148,pp. 193--207.
[7]
Bae,J.,Yoo,H.-J. 2015. "A 45 µw injection-locked fsk wake-up receiver with frequency-to-envelope conversion for crystal-less wireless body area network". In IEEE JSSC. vol. 50,pp. 1351--1360.
[8]
Koshiji,F.,Yuyama,N., and Koshiji,K. 2012. "Wireless body area communication using electromagnetic resonance coupling". In CPMT Symposium Japan. pp. 1--4.
[9]
Post,E R.,Reynolds,M.,Gray,M.,Paradiso,J., and Gershenfeld,N. 1997. "Intrabody buses for data and power". In ISWC. pp. 52--55.
[10]
Chatterjee,B.,Datta,A.,Nath,M.,G K K.,Modak,N., and Sen,S. 2022. "A 65nm 63.3μw 15mbps transceiver with switched-capacitor adiabatic signaling and combinatorial-pulse-position modulation for body-worn video-sensing ar nodes. In IEEE ISSCC 276--278.
[11]
Galluccio,L.,Melodia,T.,Palazzo,S., and Santagati,G E. 2012. "Challenges and implications of using ultrasonic communications in intra-body area networks". In WONS. pp. 182--189.
[12]
Große-Puppendahl,T.,Holz,C.,Cohn,G.,Wimmer,R.,Bechtold,O.,Hodges,S.,Reynolds,M S., and Smith,J R. 2017. "Finding common ground: A survey of capacitive sensing in human-computer interaction". In Online-ArXiV Preprint or similar. vol. 17,pp. 3293--3315.
[13]
Lin,J.,Saunders,R.,Schulmeister,K.,Söderberg,P.,Swerdlow,A.,Taki,M.,Veyret,B.,Ziegelberger,G.,Repacholi,M H.,Matthes,R.,Ahlbom,A.,Jokela,K., and Roy,C. 2010. "ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields (1 hz to 100 khz)". In Health Physics. vol. 99,pp. 818--836.
[14]
Moralis-Pegios,M.,Alexandridou,P., and Koukourlis,C. 2015. "Applying pulse width modulation in body coupled communication". In Journal of Electrical and Computer Engineering. pp. 1--6.
[15]
Galluccio,L.,Vizziello,A., and Savazzi,P. "Intra-body embedded networks exploiting ultrasounds and coupling technologies". In Online-ArXiV Preprint or similar. pp. 2021--2021.
[16]
Maity,S.,Das,D.,Chatterjee,B., and Sen,S. 2018. "Characterization and classification of human body channel as a function of excitation and termination modalities". In IEEE EMBC. pp. 3754--3757.
[17]
Sattlegger,K.,Denk,U. 2014. "Navigating your way through the rfid jungle. White Paper". In Online-ArXiV Preprint or similar.
[18]
Große-Puppendahl,T.,Herber,S. 2014. "Capacitive near-field communication for ubiquitous interaction and perception". In UbiComp '14. pp. 231--242.
[19]
Nath,M.,Maity,S., and Sen,S. 2020. "Toward understanding the return path capacitance in capacitive human body communication". In IEEE TCSII. vol. 67,pp. 1879--1883.
[20]
Maity,S.,Modak,N.,Yang,D.,Avlani,S.,Nath,M.,Danial,J.,Das,D.,Mehrotra,P., and Sen,S. 2020. "A 415 nw physically and mathematically secure electro-quasistatic hbc node in 65nm cmos for authentication and medical applications". In CICC. pp. 1--4.
[21]
Lindsey,D P.,Mckee,E L.,Hull,M L., and Howell,S M. 1998. "A new technique for transmission of signals from implantable transducers". In IEEE TBME. vol. 45,pp. 614--619.
[22]
Bae,J.,Cho,H.,Song,K.,Lee,H., and Yoo,H.-J. 2012. "The signal transmission mechanism on the surface of human body for body channel communication". In IEEE TMTT. vol. 60,pp. 582--593.
[23]
Zimmerman,T G. 1996. "Personal area networks: Near-field intra-body communication". In IBM systems Journal. vol. 35,pp. 609--617.
[24]
Hessar,M.,Iyer,V., and Gollakota,S. 2016. "Enabling on-body transmissions with commodity devices". In UbiComp. pp. 1100--1111.
[25]
Petäjäjärvi,J.,Mikhaylov,K.,Vuohtoniemi,R.,Karvonen,H., and Iinatti,J. 2016. "On the human body communications: wake-up receiver design and channel characterization". In EURASIP Journal on Wireless Communications and Networking. vol. 2016,pp. 1--17.
[26]
Maity,S.,Mojabe,K., and Sen,S. 2018. "Characterization of human body forward path loss and variability effects in voltage-mode hbc". In IEEE LMWC. vol. 28,pp. 266--268.
[27]
Maity,S.,Modak,N.,Yang,D.,Nath,M.,Avlani,S.,Das,D.,Danial,J.,Mehrotra,P., and Sen,S. 2021. "Sub-µwrcomm: 415-nw 1-10-kb/s physically and mathematically secure electro-quasi-static hbc node for authentication and medical applications". In IEEE JSSC. vol. 56,pp. 788--802.
[28]
Vu,T.,Baid,A.,Gao,S.,Gruteser,M.,Howard,R.,Lindqvist,J.,Spasojevic,P., and Walling,J. 2012. "Distinguishing users with capacitive touch communication". In MobiCom. pp. 197--208.
[29]
Song.-J. 2007. "A 0.2-mw 2-mb/s digital transceiver based on wideband signaling for human body communications". In IEEE Journal of Solid-State Circuits. vol. 42,pp. 2021--2033.
[30]
Pop,C. 2011. "AN1391: Introduction to the bodycom technology". In Online-ArXiV Preprint or similar.
[31]
Holz,C.,Knaust,M. 2015. "Biometric touch sensing: Seamlessly augmenting each touch with continuous authentication". In UIST'15. pp. 303--312.
[32]
Handa,T.,Shoji,S.,Ike,S.,Takeda,S., and Sekiguchi,T. 1997. "A very lowpower consumption wireless ecg monitoring system using body as a signal transmission medium". In Transducers 97. pp. 1003--1006.
[33]
Park,J.,Mercier,P P. 2015. "Magnetic human body communication". In IEEE EMBC. pp. 1841--1844.
[34]
Wolling,F.,Van Laerhoven,K.,Bilal,J.,Scholl,P M., and Volker,B. 2018. "Characterization classification of human body channel as a function of excitation and termination modalities. In IEEE EMBC.
[35]
Maity,S.,Yang,D.,Chatterjee,B., and Sen,S. 2019. "A sub-nw wake-up receiver for human body communication". In BioCAS. pp. 1--4.
[36]
Tomlinson,W J.,Banou,S.,Yu,C.,Stojanovic,M., and Chowdhury,K R. 2019. "Comprehensive survey of galvanic coupling and alternative intra-body communication technologies". In IEEE Communications Surveys and Tutorials. vol. 21,pp. 1145--1164.
[37]
Naranjo-Hernández,D.,Callejón-Leblic,A. 2018. "Past results, present trends, and future challenges in intrabody communication". In Wireless Communications and Mobile Computing. pp. 1--39.
[38]
Cho,N.,Yan,L.,Bae,J., and Yoo,H.-J. 2009. "A 60 kb/s-10 mb/s adaptive frequency hopping transceiver for interference-resilient body channel communication". In IEEE JSSC. vol. 44,pp. 708--717.
[39]
Wolling,F.,Huynh,C D., and Van Laerhoven,K. 2021. "IBSync: Intra-body synchronization of wearable devices using artificial ecg landmarks". In ISWC. pp. 102--107.
[40]
Maity,S.,Nath,M.,Bhattacharya,G.,Chatterjee,B., and Sen,S. 2020. "On the safety of human body communication". In IEEE TBME. vol. 67,pp. 3392--3402.
[41]
Cho,H.,Bae,J., and Yoo,H.-J. 2013. "A 37.5 µw body channel communication wake-up receiver with injection-locking ring oscillator for wireless body area network". In IEEE TCSI. vol. 60,pp. 1200--1208.
[42]
Wegmueller,M S.,Kuhn,A.,Froehlich,J.,Oberle,M.,Felber,N.,Kuster,N., and Fichtner,W. 2007. "An attempt to model the human body as a communication channel". In IEEE TBME. vol. 54,pp. 1851--1857.

Index Terms

  1. OpenIBC: Open-Source Wake-Up Receiver for Capacitive Intra-Body Communication
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      EWSN '22: Proceedings of the 2022 International Conference on Embedded Wireless Systems and Networks
      December 2022
      273 pages

      Sponsors

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 18 January 2023

      Check for updates

      Qualifiers

      • Article

      Conference

      EWSN '22
      October 3 - 5, 2022
      Linz, Austria

      Acceptance Rates

      EWSN '22 Paper Acceptance Rate 18 of 46 submissions, 39%;
      Overall Acceptance Rate 81 of 195 submissions, 42%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 15 Oct 2024

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media