Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3618408.3618748guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

PaLM-E: an embodied multimodal language model

Published: 23 July 2023 Publication History

Abstract

Large language models excel at a wide range of complex tasks. However, enabling general inference in the real world, e.g. for robotics problems, raises the challenge of grounding. We propose embodied language models to directly incorporate real-world continuous sensor modalities into language models and thereby establish the link between words and percepts. Input to our embodied language model are multimodal sentences that interleave visual, continuous state estimation, and textual input encodings. We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks including sequential robotic manipulation planning, visual question answering, and captioning. Our evaluations show that PaLM-E, a single large embodied multimodal model, can address a variety of embodied reasoning tasks, from a variety of observation modalities, on multiple embodiments, and further, exhibits positive transfer: the model benefits from diverse joint training across internetscale language, vision, and visual-language domains. Our largest model with 562B parameters, in addition to being trained on robotics tasks, is a visual-language generalist with state-of-the-art performance on OK-VQA, and retains generalist language capabilities with increasing scale.

References

[1]
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A., et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.
[2]
Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds, M., et al. Flamingo: a visual language model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.
[3]
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.
[4]
Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A., Hsu, J., et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.
[5]
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural information processing systems, 33: 1877-1901, 2020.
[6]
Changpinyo, S., Kukliansky, D., Szpektor, I., Chen, X., Ding, N., and Soricut, R. All you may need for vqa are image captions, 2022. URL https://arxiv.org/abs/2205.01883.
[7]
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.
[8]
Chen, T., Saxena, S., Li, L., Fleet, D. J., and Hinton, G. Pix2seq: A language modeling framework for object detection. arXiv preprint arXiv:2109.10852, 2021b.
[9]
Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollár, P., and Zitnick, C. L. Microsoft COCO captions: Data collection and evaluation server. CoRR, abs/1504.00325, 2015.
[10]
Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A., Padlewski, P., Salz, D., Goodman, S., Grycner, A., Mustafa, B., Beyer, L., et al. Pali: A jointly-scaled multilingual language-image model. arXiv preprint arXiv:2209.06794, 2022.
[11]
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.
[12]
Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., Steiner, A., Caron, M., Geirhos, R., Alabdulmohsin, I., et al. Scaling vision transformers to 22 billion parameters. arXiv preprint arXiv:2302.05442, 2023.
[13]
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[14]
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
[15]
Driess, D., Ha, J.-S., and Toussaint, M. Deep visual reasoning: Learning to predict action sequences for task and motion planning from an initial scene image. In Proc. of Robotics: Science and Systems (R:SS), 2020.
[16]
Gan, Z., Li, L., Li, C., Wang, L., Liu, Z., Gao, J., et al. Vision-language pre-training: Basics, recent advances, and future trends. Foundations and TrendsR in Computer Graphics and Vision, 14(3-4):163-352, 2022.
[17]
Glaese, A., McAleese, N., Trebacz, M., Aslanides, J., Firoiu, V., Ewalds, T., Rauh, M., Weidinger, L., Chadwick, M., Thacker, P., et al. Improving alignment of dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.
[18]
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[19]
Guhur, P.-L., Chen, S., Garcia, R., Tapaswi, M., Laptev, I., and Schmid, C. Instruction-driven history-aware policies for robotic manipulations. arXiv preprint arXiv:2209.04899, 2022.
[20]
Hao, Y., Song, H., Dong, L., Huang, S., Chi, Z., Wang, W., Ma, S., and Wei, F. Language models are general-purpose interfaces. arXiv preprint arXiv:2206.06336, 2022.
[21]
Hu, X., Gan, Z., Wang, J., Yang, Z., Liu, Z., Lu, Y., and Wang, L. Scaling up vision-language pre-training for image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17980-17989, 2022.
[22]
Huang, C., Mees, O., Zeng, A., and Burgard, W. Visual language maps for robot navigation. arXiv preprint arXiv:2210.05714, 2022a.
[23]
Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Language models as zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022b.
[24]
Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al. Inner monologue: Embodied reasoning through planning with language models. arXiv preprint arXiv:2207.05608, 2022c.
[25]
Ilharco, G., Wortsman, M., Wightman, R., Gordon, C., Carlini, N., Taori, R., Dave, A., Shankar, V., Namkoong, H., Miller, J., Hajishirzi, H., Farhadi, A., and Schmidt, L. Openclip, 2021.
[26]
Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F., Lynch, C., Levine, S., and Finn, C. Bc-z: Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning, pp. 991-1002. PMLR, 2022.
[27]
Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y., Fei-Fei, L., Anandkumar, A., Zhu, Y., and Fan, L. Vima: General robot manipulation with multimodal prompts. arXiv preprint arXiv:2210.03094, 2022.
[28]
Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V., et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651-673. PMLR, 2018.
[29]
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.
[30]
Lester, B., Al-Rfou, R., and Constant, N. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021.
[31]
Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A., Anil, C., Schlag, I., Gutman-Solo, T., et al. Solving quantitative reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.
[32]
Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., and Chang, K.-W. Visualbert: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.
[33]
Li, M., Lv, T., Chen, J., Cui, L., Lu, Y., Florencio, D., Zhang, C., Li, Z., and Wei, F. Trocr: Transformer-based optical character recognition with pre-trained models. arXiv preprint arXiv:2109.10282, 2021.
[34]
Li, S., Puig, X., Du, Y., Wang, C., Akyurek, E., Torralba, A., Andreas, J., and Mordatch, I. Pre-trained language models for interactive decision-making. arXiv preprint arXiv:2202.01771, 2022.
[35]
Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., and Zeng, A. Code as policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753, 2022.
[36]
Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf, T. Object-centric learning with slot attention. Advances in Neural Information Processing Systems, 33:11525- 11538, 2020.
[37]
Lu, J., Batra, D., Parikh, D., and Lee, S. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. Advances in neural information processing systems, 32, 2019.
[38]
Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Pretrained transformers as universal computation engines. arXiv preprint arXiv:2103.05247, 1, 2021.
[39]
Lynch, C. and Sermanet, P. Language conditioned imitation learning over unstructured data. arXiv preprint arXiv:2005.07648, 2020.
[40]
Lynch, C., Wahid, A., Tompson, J., Ding, T., Betker, J., Baruch, R., Armstrong, T., and Florence, P. Interactive language: Talking to robots in real time. arXiv preprint arXiv:2210.06407, 2022.
[41]
Marino, K., Rastegari, M., Farhadi, A., and Mottaghi, R. Okvqa: A visual question answering benchmark requiring external knowledge. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[42]
Nair, S., Mitchell, E., Chen, K., Savarese, S., Finn, C., et al. Learning language-conditioned robot behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning, pp. 1303-1315. PMLR, 2022.
[43]
Nottingham, K., Ammanabrolu, P., Suhr, A., Choi, Y., Hajishirzi, H., Singh, S., and Fox, R. Do embodied agents dream of pixelated sheep?: Embodied decision making using language guided world modelling. arXiv preprint arXiv:2301.12050, 2023.
[44]
Piergiovanni, A., Kuo, W., and Angelova, A. Pretraining image-language transformers for open-vocabulary tasks, 2022. URL https://arxiv.org/abs/2209. 04372.
[45]
Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I., and Sutskever, I. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344, 2022.
[46]
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. In International conference on machine learning, pp. 8748-8763. PMLR, 2021.
[47]
Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky, Y., Kay, J., Springenberg, J. T., et al. A generalist agent. arXiv preprint arXiv:2205.06175, 2022.
[48]
Ryoo, M. S., Piergiovanni, A., Arnab, A., Dehghani, M., and Angelova, A. Tokenlearner: What can 8 learned tokens do for images and videos? arXiv preprint arXiv:2106.11297, 2021.
[49]
Sajjadi, M. S. M., Duckworth, D., Mahendran, A., van Steenkiste, S., Pavetić, F., Lučić, M., Guibas, L. J., Greff, K., and Kipf, T. Object Scene Representation Transformer. NeurIPS, 2022a. URL https://osrt-paper.github.io/.
[50]
Sajjadi, M. S. M., Meyer, H., Pot, E., Bergmann, U., Greff, K., Radwan, N., Vora, S., Lučić, M., Duckworth, D., Dosovitskiy, A., et al. Scene representation transformer: Geometry-free novel view synthesis through set-latent scene representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6229-6238, 2022b.
[51]
Shah, D., Osinski, B., Ichter, B., and Levine, S. Lmnav: Robotic navigation with large pre-trained models of language, vision, and action. arXiv preprint arXiv:2207.04429, 2022.
[52]
Sharma, P., Ding, N., Goodman, S., and Soricut, R. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.
[53]
Sharma, P., Torralba, A., and Andreas, J. Skill induction and planning with latent language. arXiv preprint arXiv:2110.01517, 2021.
[54]
Shridhar, M., Manuelli, L., and Fox, D. Cliport: What and where pathways for robotic manipulation. In Conference on Robot Learning, pp. 894-906. PMLR, 2022a.
[55]
Shridhar, M., Manuelli, L., and Fox, D. Perceiver-actor: A multi-task transformer for robotic manipulation. arXiv preprint arXiv:2209.05451, 2022b.
[56]
Silva, A., Moorman, N., Silva, W., Zaidi, Z., Gopalan, N., and Gombolay, M. Lancon-learn: Learning with language to enable generalization in multi-task manipulation. IEEE Robotics and Automation Letters, 7(2):1635-1642, 2021.
[57]
Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-Prompt: Generating situated robot task plans using large language models. arXiv preprint arXiv:2209.11302, 2022.
[58]
Tellex, S., Gopalan, N., Kress-Gazit, H., and Matuszek, C. Robots that use language. Annual Review of Control, Robotics, and Autonomous Systems, 3:25-55, 2020.
[59]
Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022.
[60]
Tsimpoukelli, M., Menick, J. L., Cabi, S., Eslami, S., Vinyals, O., and Hill, F. Multimodal few-shot learning with frozen language models. Advances in Neural Information Processing Systems, 34:200-212, 2021.
[61]
Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. Describe, explain, plan and select: Interactive planning with large language models enables open-world multi-task agents. arXiv preprint arXiv:2302.01560, 2023.
[62]
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., and Zhou, D. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.
[63]
Xiao, T., Chan, H., Sermanet, P., Wahid, A., Brohan, A., Hausman, K., Levine, S., and Tompson, J. Robotic skill acquisition via instruction augmentation with vision-language models. arXiv preprint arXiv:2211.11736, 2022.
[64]
Zellers, R., Holtzman, A., Peters, M., Mottaghi, R., Kembhavi, A., Farhadi, A., and Choi, Y. Piglet: Language grounding through neuro-symbolic interaction in a 3d world. arXiv preprint arXiv:2106.00188, 2021a.
[65]
Zellers, R., Lu, X., Hessel, J., Yu, Y., Park, J. S., Cao, J., Farhadi, A., and Choi, Y. Merlot: Multimodal neural script knowledge models. Advances in Neural Information Processing Systems, 34:23634-23651, 2021b.
[66]
Zeng, A., Wong, A., Welker, S., Choromanski, K., Tombari, F., Purohit, A., Ryoo, M., Sindhwani, V., Lee, J., Vanhoucke, V., et al. Socratic models: Composing zeroshot multimodal reasoning with language. arXiv preprint arXiv:2204.00598, 2022.
[67]
Zhang, Y. and Chai, J. Hierarchical task learning from language instructions with unified transformers and self-monitoring. arXiv preprint arXiv:2106.03427, 2021.
[68]
Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J., and Gao, J. Unified vision-language pre-training for image captioning and vqa. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

Cited By

View all
  • (2024)A survey of efficient fine-tuning methods for Vision-Language Models — Prompt and AdapterComputers and Graphics10.1016/j.cag.2024.01.012119:COnline publication date: 1-Apr-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICML'23: Proceedings of the 40th International Conference on Machine Learning
July 2023
43479 pages

Publisher

JMLR.org

Publication History

Published: 23 July 2023

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A survey of efficient fine-tuning methods for Vision-Language Models — Prompt and AdapterComputers and Graphics10.1016/j.cag.2024.01.012119:COnline publication date: 1-Apr-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media