Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3666122.3668473guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
research-article

Estimating noise correlations across continuous conditions with Wishart processes

Published: 10 December 2023 Publication History

Abstract

The signaling capacity of a neural population depends on the scale and orientation of its covariance across trials. Estimating this "noise" covariance is challenging and is thought to require a large number of stereotyped trials. New approaches are therefore needed to interrogate the structure of neural noise across rich, naturalistic behaviors and sensory experiences, with few trials per condition. Here, we exploit the fact that conditions are smoothly parameterized in many experiments and leverage Wishart process models to pool statistical power from trials in neighboring conditions. We demonstrate that these models perform favorably on experimental data from the mouse visual cortex and monkey motor cortex relative to standard covariance estimators. Moreover, they produce smooth estimates of covariance as a function of stimulus parameters, enabling estimates of noise correlations in entirely unseen conditions as well as continuous estimates of Fisher information— a commonly used measure of signal fidelity. Together, our results suggest that Wishart processes are broadly applicable tools for quantification and uncertainty estimation of noise correlations in trial-limited regimes, paving the way toward understanding the role of noise in complex neural computations and behavior.

Supplementary Material

Additional material (3666122.3668473_supp.pdf)
Supplemental material.

References

[1]
E Zohary, M N Shadlen, and W T Newsome. "Correlated neuronal discharge rate and its implications for psychophysical performance". In: Nature 370.6485 (July 1994), pp. 140-143.
[2]
M N Shadlen, K H Britten, W T Newsome, and J A Movshon. "A computational analysis of the relationship between neuronal and behavioral responses to visual motion". In: J. Neurosci. 16.4 (Feb. 1996), pp. 1486-1510.
[3]
Bruno B Averbeck, Peter E Latham, and Alexandre Pouget. "Neural correlations, population coding and computation". In: Nature reviews neuroscience 7.5 (2006), pp. 358-366.
[4]
Marlene R Cohen and Adam Kohn. "Measuring and interpreting neuronal correlations". In: Nat. Neurosci. 14.7 (June 2011), pp. 811-819.
[5]
Stefano Panzeri, Monica Moroni, Houman Safaai, and Christopher D Harvey. "The structures and functions of correlations in neural population codes". In: Nat. Rev. Neurosci. 23.9 (Sept. 2022), pp. 551-567.
[6]
L F Abbott and P Dayan. "The effect of correlated variability on the accuracy of a population code". In: Neural Comput. 11.1 (Jan. 1999), pp. 91-101.
[7]
Rubén Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq Pitkow, Peter Latham, and Alexandre Pouget. "Information-limiting correlations". In: Nat. Neurosci. 17.10 (Oct. 2014), pp. 1410-1417.
[8]
Dimitri Yatsenko, Krešimir Josić, Alexander S Ecker, Emmanouil Froudarakis, R James Cotton, and Andreas S Tolias. "Improved estimation and interpretation of correlations in neural circuits". In: PLoS Comput. Biol. 11.3 (Mar. 2015), e1004083.
[9]
Alex H. Williams and Scott W. Linderman. "Statistical neuroscience in the single trial limit". In: Current Opinion in Neurobiology 70 (2021). Computational Neuroscience, pp. 193-205. ISSN: 0959-4388.
[10]
Oleg I Rumyantsev, Jérôme A Lecoq, Oscar Hernandez, Yanping Zhang, Joan Savall, Radoslaw Chrapkiewicz, Jane Li, Hongkui Zeng, Surya Ganguli, and Mark J Schnitzer. "Fundamental bounds on the fidelity of sensory cortical coding". In: Nature 580.7801 (Apr. 2020), pp. 100-105.
[11]
Iain M. Johnstone and Debashis Paul. "PCA in High Dimensions: An Orientation". In: Proceedings of the IEEE 106.8 (2018), pp. 1277-1292.
[12]
Joel Dapello, Jenelle Feather, Hang Le, Tiago Marques, David Cox, Josh McDermott, James J DiCarlo, and Sueyeon Chung. "Neural Population Geometry Reveals the Role of Stochasticity in Robust Perception". In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 15595-15607.
[13]
Lyndon R. Duong, Jingyang Zhou, Josue Nassar, Jules Berman, Jeroen Olieslagers, and Alex H. Williams. "Representational dissimilarity metric spaces for stochastic neural networks". In: International Conference on Learning Representations. 2023.
[14]
Adam Kohn and Matthew A Smith. "Stimulus dependence of neuronal correlation in primary visual cortex of the macaque". In: J. Neurosci. 25.14 (Apr. 2005), pp. 3661-3673.
[15]
Marlene R. Cohen and William T. Newsome. "Context-Dependent Changes in Functional Circuitry in Visual Area MT". In: Neuron 60.1 (2008), pp. 162-173. ISSN: 0896-6273.
[16]
Adrian Ponce-Alvarez, Alexander Thiele, Thomas D. Albright, Gene R. Stoner, and Gustavo Deco. "Stimulus-dependent variability and noise correlations in cortical MT neurons". In: Proceedings of the National Academy of Sciences 110.32 (2013), pp. 13162-13167.
[17]
C Gourieroux, J Jasiak, and R Sufana. "The Wishart Autoregressive process of multivariate stochastic volatility". In: J. Econom. 150.2 (June 2009), pp. 167-181.
[18]
Mohsen Pourahmadi. High-dimensional covariance estimation: with high-dimensional data. Vol. 882. John Wiley & Sons, 2013.
[19]
Olivier Ledoit and Michael Wolf. "A well-conditioned estimator for large-dimensional co-variance matrices". In: Journal of Multivariate Analysis 88.2 (2004), pp. 365-411. ISSN: 0047-259X.
[20]
Mehdi Rahim, Bertrand Thirion, and Gaël Varoquaux. "Population shrinkage of covariance (PoSCE) for better individual brain functional-connectivity estimation". In: Medical image analysis 54 (2019), pp. 138-148.
[21]
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. "Sparse inverse covariance estimation with the graphical lasso". In: Biostatistics 9.3 (Dec. 2007), pp. 432-441. ISSN: 1465-4644.
[22]
Ming Bo Cai, Nicolas W Schuck, Jonathan W Pillow, and Yael Niv. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias". In: PLoS Comput. Biol. 15.5 (May 2019), e1006299.
[23]
Hsin-Hung Li, Thomas C. Sprague, Aspen H. Yoo, Wei Ji Ma, and Clayton E. Curtis. "Joint representation of working memory and uncertainty in human cortex". In: Neuron 109.22 (2021), 3699-3712.e6. ISSN: 0896-6273.
[24]
Alexander Walther, Hamed Nili, Naveed Ejaz, Arjen Alink, Nikolaus Kriegeskorte, and Jörn Diedrichsen. "Reliability of dissimilarity measures for multi-voxel pattern analysis". In: Neuroimage 137 (Aug. 2016), pp. 188-200.
[25]
Carsen Stringer, Michalis Michaelos, Dmitri Tsyboulski, Sarah E. Lindo, and Marius Pachitariu. "High-precision coding in visual cortex". In: Cell 184.10 (2021), 2767-2778.e15. ISSN: 00928674.
[26]
MohammadMehdi Kafashan, Anna W. Jaffe, Selmaan N. Chettih, Ramon Nogueira, Iñigo Arandia-Romero, Christopher D. Harvey, Rubén Moreno-Bote, and Jan Drugowitsch. "Scaling of sensory information in large neural populations shows signatures of information-limiting correlations". In: Nature Communications 12.1 (Jan. 2021), p. 473. ISSN: 2041-1723.
[27]
M M Merzenich, P L Knight, and G L Roth. "Representation of cochlea within primary auditory cortex in the cat". In: J. Neurophysiol. 38.2 (Mar. 1975), pp. 231-249.
[28]
Elena Kudryavitskaya, Eran Marom, Haran Shani-Narkiss, David Pash, and Adi Mizrahi. "Flexible categorization in the mouse olfactory bulb". In: Curr. Biol. 31.8 (Apr. 2021), 1616-1631.e4.
[29]
Nir Even-Chen, Blue Sheffer, Saurabh Vyas, Stephen I Ryu, and Krishna V Shenoy. "Structure and variability of delay activity in premotor cortex". In: PLoS Comput. Biol. 15.2 (Feb. 2019), e1006808.
[30]
Omer Hazon, Victor H Minces, David P Tomàs, Surya Ganguli, Mark J Schnitzer, and Pablo E Jercog. "Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial representations". In: Nat. Commun. 13.1 (July 2022), p. 4276.
[31]
Adrien Peyrache, Marie M Lacroix, Peter C Petersen, and György Buzsáki. "Internally organized mechanisms of the head direction sense". In: Nat. Neurosci. 18.4 (Apr. 2015), pp. 569575.
[32]
Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.
[33]
Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V Shenoy, and Maneesh Sahani. "Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity". In: Advances in Neural Information Processing Systems. Ed. by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou. Vol. 21. Curran Associates, Inc., 2008.
[34]
Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. "Learning interpretable continuous-time models of latent stochastic dynamical systems". In: Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, 2019, pp. 1726-1734.
[35]
Stephen Keeley, David Zoltowski, Yiyi Yu, Spencer Smith, and Jonathan Pillow. "Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations". In: International Conference on Machine Learning. PMLR. 2020, pp. 5177-5186.
[36]
Virginia Rutten, Alberto Bernacchia, Maneesh Sahani, and Guillaume Hennequin. "Nonreversible Gaussian processes for identifying latent dynamical structure in neural data". In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 9622-9632.
[37]
Stephen Keeley, Mikio Aoi, Yiyi Yu, Spencer Smith, and Jonathan W Pillow. "Identifying signal and noise structure in neural population activity with Gaussian process factor models". In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 13795-13805.
[38]
Anqi Wu, Nicholas A. Roy, Stephen Keeley, and Jonathan W Pillow. "Gaussian process based nonlinear latent structure discovery in multivariate spike train data". In: Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.
[39]
David Inouye, Eunho Yang, Genevera Allen, and Pradeep Ravikumar. "A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution". In: Wiley Interdiscip. Rev Comput. Stat. 9.3 (Mar. 2017).
[40]
György Buzsáki and Kenji Mizuseki. "The log-dynamic brain: how skewed distributions affect network operations". In: Nat. Rev. Neurosci. 15.4 (Apr. 2014), pp. 264-278.
[41]
Feng Zhu, Harrison A Grier, Raghav Tandon, Changjia Cai, Anjali Agarwal, Andrea Giovannucci, Matthew T Kaufman, and Chethan Pandarinath. "A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution". In: Nat. Neurosci. 25.12 (Dec. 2022), pp. 1724-1734.
[42]
Andrew Gordon Wilson and Zoubin Ghahramani. "Generalised Wishart processes". In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011. AUAI Press. 2011, pp. 736-744.
[43]
Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian data analysis (Third Edition). CRC press, 2013.
[44]
Bernhard Scholkopf and Alexander J Smola. Learning with kernels. Adaptive Computation and Machine Learning series. London, England: MIT Press, Dec. 2001.
[45]
Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. "Kernel methods in machine learning". In: The Annals of Statistics 36.3 (2008), pp. 1171-1220.
[46]
David JC MacKay et al. "Introduction to Gaussian processes". In: NATO ASI series F computer and systems sciences 168 (1998), pp. 133-166.
[47]
Neil C Rabinowitz, Robbe L Goris, Marlene Cohen, and Eero P Simoncelli. "Attention stabilizes the shared gain of V4 populations". In: eLife 4 (Nov. 2015). Ed. by Matteo Carandini, e08998. ISSN: 2050-084X.
[48]
David M Blei, Alp Kucukelbir, and Jon D McAuliffe. "Variational Inference: A Review for Statisticians". In: J. Am. Stat. Assoc. 112.518 (Apr. 2017), pp. 859-877.
[49]
Creighton Heaukulani and Mark van der Wilk. "Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes". In: Advances in Neural Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.
[50]
Du Phan, Neeraj Pradhan, and Martin Jankowiak. "Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro". In: arXiv preprint arXiv:1912.11554 (2019).
[51]
Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
[52]
Marino Pagan, Eero P Simoncelli, and Nicole C Rust. "Neural quadratic discriminant analysis: Nonlinear decoding with V1-like computation". In: Neural computation 28.11 (2016), pp. 2291-2319.
[53]
David A Rosenbaum. "Human movement initiation: Specification of arm, direction, and extent". In: J. Exp. Psychol. Gen. 109.4 (Dec. 1980), pp. 444-474.
[54]
S P Wise. "The primate premotor cortex: past, present, and preparatory". In: Annu. Rev. Neurosci. 8 (1985), pp. 1-19.
[55]
Gregorio Luis Galiñanes, Claudia Bonardi, and Daniel Huber. "Directional Reaching for Water as a Cortex-Dependent Behavioral Framework for Mice". In: Cell Rep. 22.10 (Mar. 2018), pp. 2767-2783.
[56]
J Tanji and E V Evarts. "Anticipatory activity of motor cortex neurons in relation to direction of an intended movement". In: J. Neurophysiol. 39.5 (Sept. 1976), pp. 1062-1068.
[57]
J Messier and J F Kalaska. "Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task". In: J. Neurophysiol. 84.1 (July 2000), pp. 152-165.
[58]
Afsheen Afshar, Gopal Santhanam, Byron M. Yu, Stephen I. Ryu, Maneesh Sahani, and Krishna V. Shenoy. "Single-Trial Neural Correlates of Arm Movement Preparation". In: Neuron 71.3 (2011), pp. 555-564. ISSN: 0896-6273.
[59]
Gustav Theodor Fechner. Elemente der psychophysik. Vol. 2. Breitkopf u. Härtel, 1860.
[60]
Michael A. Webster, Karen K. De Valois, and Eugene Switkes. "Orientation and spatial-frequency discrimination for luminance and chromatic gratings". In: J. Opt. Soc. Am. A 7.6 (June 1990), pp. 1034-1049.
[61]
D C Burr and S A Wijesundra. "Orientation discrimination depends on spatial frequency". In: Vision Res. 31.7-8 (1991), pp. 1449-1452.
[62]
R Vogels and G A Orban. "How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey". In: J. Neurosci. 10.11 (Nov. 1990), pp. 3543-3558.
[63]
Olivier J Hénaff, Yoon Bai, Julie A Charlton, Ian Nauhaus, Eero P Simoncelli, and Robbe L T Goris. "Primary visual cortex straightens natural video trajectories". In: Nat. Commun. 12.1 (Oct. 2021), p. 5982.
[64]
Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. "Importance weighted autoencoders". In: 2015.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS '23: Proceedings of the 37th International Conference on Neural Information Processing Systems
December 2023
80772 pages

Publisher

Curran Associates Inc.

Red Hook, NY, United States

Publication History

Published: 10 December 2023

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media