Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/645315.649162guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Computing the Physical Parameters of Rigid-Body Motion from Video

Published: 28 May 2002 Publication History
  • Get Citation Alerts
  • Abstract

    This paper presents an optimization framework for estimating the motion and underlying physical parameters of a rigid body in free flight from video. The algorithm takes a video clip of a tumbling rigid body of known shape and generates a physical simulation of the object observed in the video clip. This solution is found by optimizing the simulation parameters to best match the motion observed in the video sequence. These simulation parameters include initial positions and velocities, environment parameters like gravity direction and parameters of the camera. A global objective function computes the sum squared difference between the silhouette of the object in simulation and the silhouette obtained from video at each frame. Applications include creating interesting rigid body animations, tracking complex rigid body motions in video and estimating camera parameters from video.

    References

    [1]
    D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. In Computer Graphics, Proceedings of SIGGRAPH 94 , pages 23-34, 1994.
    [2]
    K.S. Bhat, M. Saptharishi, and P. K. Khosla. Motion detection and segmentation using image mosaics. IEEE International Conference on Multimedia and Expo. , 2000.
    [3]
    B.E. Bishop and M.W. Spong. Vision-based control of an air hockey playing robot. IEEE Control Systems , pages 23-32, June 1999.
    [4]
    C. Bregler. Learning and recognizing human dynamics in video sequences. Proc. IEEE Conf. on Computer Vision and Pattern Recognition , pages 8-15, June 1997.
    [5]
    S. Chandrashekhar and R. Chellappa. Passive navigation in a partially known environment. Proc. IEEE Workshop on Visual Motion , pages 2-7, 1991.
    [6]
    S. Chenney and D.A. Forsyth. Sampling plausible solutions to multi-body constraint problems. In Computer Graphics, Proceedings of SIGGRAPH 00 , pages 219-228, 2000.
    [7]
    Q. Delamarre and O. Faugeras. 3d articulated models and multi-viewtracking with silhouettes. In Proc. of the Seventh International Conference on Computer Vision, IEEE , pages 716-721, 1999.
    [8]
    O. Faugeras, Q.T Luong, and T. Papadopoulo. The Geometry of Multiple Images . MIT Press, 2001.
    [9]
    B.K. Ghosh and E.P. Loucks. A perspective theory for motion and shape estimation in machine vision. SIAM Journal of Control and Optimization , 33(5):1530-1559, 1995.
    [10]
    W.E. Grimson. Object recognition by computer: the role of geometric constraints . MIT Press, 1990.
    [11]
    C. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors, Active Vision , chapter 4, pages 59-73. The MIT Press, 1992.
    [12]
    R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision . Cambridge University Press, 2000.
    [13]
    D. Jacobs and R. Basri. 3-d to 2-d pose determination with regions. International Journal of Computer Vision , 34(2/3):123-145, 1999.
    [14]
    P. K. Khosla. Estimation of robot dynamics parameters: Theory and application. International Journal of Robotics and Automation , 3(1):35-41, 1988.
    [15]
    Y. Masutani, T. Iwatsu, and F. Miyazaki. Motion estimation of unknown rigid body under no external forces and moments. IEEE International Conference on Robotics and Automation , 2:1066-1072, 1994.
    [16]
    D. Metaxas and D. Terzopoulos. Shape and nonrigid motion estimation through physics-based synthesis. IEEE Trans. Pattern Analysis and Machine Intelligence , 15(6):580-591, 1993.
    [17]
    A. Pentland and B. Horowitz. Recovery of nonrigid motion and structure. IEEE Trans. Pattern Analysis and Machine Intelligence , 13(7):730-742, July 1991.
    [18]
    J. Popovic. Interactive Design of Rigid-Body Simulation for Computer Animation . Ph.D Thesis, CMU-CS-01-140, Carnegie Mellon University, July 2001.
    [19]
    J. Popovic, S.M. Seitz, M. Erdmann, Z. Popovic, and A. Witkin. Interactive manipulation of rigid body simulations. In Computer Graphics, Proceedings of SIGGRAPH 00 , pages 209-218, 2000.
    [20]
    A.A. Rizzi and D.E. Koditschek. An active visual estimator for dexterous manipulation. IEEE Transactions on Robotics and Automation , 12(5):697-713, 1996.
    [21]
    J. Schick and E.D. Dickmanns. Simultaneous estimation of 3d shape and motion of objects by computer vision. Proc. IEEE Workshop on Visual Motion , pages 256-261, 1991.
    [22]
    K. Symon. Mechanics, Third Edition . Addison-Wesley Publishing Company, Reading, Massachussetts, 1971.
    [23]
    C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision , 9(2):137-154, November 1992.
    [24]
    C. Wren. Understanding Expressive Action . Ph.D Thesis, Massachusetts Institute of Technology, March 2000.

    Cited By

    View all

    Index Terms

    1. Computing the Physical Parameters of Rigid-Body Motion from Video
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          ECCV '02: Proceedings of the 7th European Conference on Computer Vision-Part I
          May 2002
          810 pages

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 28 May 2002

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 27 Jul 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Non-Newtonian ViRheometry via Similarity AnalysisACM Transactions on Graphics10.1145/361831042:6(1-16)Online publication date: 5-Dec-2023
          • (2019)Video-guided real-to-virtual parameter transfer for viscous fluidsACM Transactions on Graphics10.1145/3355089.335655138:6(1-12)Online publication date: 8-Nov-2019
          • (2018)InpherProceedings of the 2018 CHI Conference on Human Factors in Computing Systems10.1145/3173574.3174104(1-5)Online publication date: 21-Apr-2018
          • (2017)Visual interaction networks: learning a physics simulator from videoProceedings of the 31st International Conference on Neural Information Processing Systems10.5555/3294996.3295207(4542-4550)Online publication date: 4-Dec-2017
          • (2014)Inverse-Foley animationACM Transactions on Graphics10.1145/2601097.260117833:4(1-11)Online publication date: 27-Jul-2014
          • (2012)Video-based 3D motion capture through biped controlACM Transactions on Graphics10.1145/2185520.218552331:4(1-12)Online publication date: 1-Jul-2012
          • (2009)Two-level regression of body mass distribution from X-ray image databaseProceedings of the 16th IEEE international conference on Image processing10.5555/1819298.1819461(2605-2608)Online publication date: 7-Nov-2009
          • (2007)Flipping with physicsProceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation10.5555/1272690.1272696(35-44)Online publication date: 3-Aug-2007
          • (2005)Learning physics-based motion style with nonlinear inverse optimizationACM SIGGRAPH 2005 Papers10.1145/1186822.1073314(1071-1081)Online publication date: 31-Jul-2005
          • (2005)Learning physics-based motion style with nonlinear inverse optimizationACM Transactions on Graphics10.1145/1073204.107331424:3(1071-1081)Online publication date: 1-Jul-2005

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media