Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/823462.824272guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Retinomorphic Chips that see Quadrupple Images

Published: 07 April 1999 Publication History

Abstract

Retinomorphic Chips may improve their spike-coding efficiency by emulating the primate retina's parallel pathways. To this end, I recreated retinal microcircuits in a chip, Visio1, that models the four predominant ganglion-cells, a die size of 9.25 9.67mm in 1.2µm 5V CMOS, and consumes 11.5mW at 5 spikes/seconds/neuron. Visio1 includes novel subthreshold current-mode circuits that use horizontal-cell autofeedback to decouple spatiotemporal bandpass filtering from local gain control and use amacrine-cell loop-gain modulation to adapt highpass and lowpass temporal filtering. Different ganglion cells respond to motion in a stereotyped sequence, making it possible to detect edges of one contrast or the other moving in one direction or the other. I present results from a multichip 2-D motion architecture, which implements Watson and Ahumada's model of human visual-motion sensing.

References

[1]
E H Adelson and J R Bergen. Spatiotemporal energy models of the perception of motion. J Opt Soc Am , 2(2):284-299. 1985.
[2]
A G Andreou and K A Boahen. Synthetic neural circuits using current-domain signal representations. Neural Computation , 1:489-501, 1989.
[3]
A G Andreou and K A Boahen. A 48,000 pixel. 590,000 transistor silicon retina in current-mode subthreshold cmos. In Proc. 37th Midwest Symposium on Circ. and Sys. , pages 97-102. Lafayette. Louisiana, 1994.
[4]
A G Andreon and K A Boahen. Neural information processing (ii). In M Ismail and T Fiez. editors. Analog VLSI Signal and Information Processing , chapter 8. McGraw-Hill, 1994.
[5]
A G Andreou and K A Boahen. Translinear circuits in subthreshold mos. J. Analog Integrated Circ. Sig. Proc. , 9:141-166, 1996.
[6]
J Atick and N Redlich. What does the retina know about natural scene. Neural Computation , 4(2):196-210, 1992.
[7]
K A Boahen. Retinomorphic vision systems. Microneuro'96: Fifth Int. Conf. Neural Networks and Fuzzy Systems, Los Alamitos CA: 1996. IEEE Comp. Soc. Press.
[8]
K A Boahen. Retinomorphic Vision Systems: Reverse Engineering the Vertebrate Retina . PhD thesis, California Institute of Technology, Pasadena CA, 1996.
[9]
K A Boahen. The retinomorphic approach: Pixel-parallel adaptive amplification, filtering, and quantization. Analog Integr. Circ. and Sig. Proc. , 13:53-68, 1997.
[10]
K A Boahen. Massive connectivity between neuromorphic chips using address-events. In preparation . 1999.
[11]
K A Boahen. A throughput-on-demand address-event transmitter for neuromorphic chips. In Conference on Advanced Research in VLSL , Los Alamitos CA, 1999. IEEE Computer Soc Press.
[12]
K A Boahen and A Andreou. A contrast-sensitive retina with reciprocal synapses. In J E Moody, editor, Advances in neural information processing 4 , volume 4, San Mateo CA, 1991. Morgan Kaufman.
[13]
E Cohen and P Sterling. Microcircuitry related to the recep-tire field center of the on-beta ganglion cell. J Neurophysiol , 65(2):352-9, 1991.
[14]
L J Croner and E Kaplan. Receptive fields of p and m ganglion cells across the primate retina. Vision Res. 35(1):7-24. 1995.
[15]
L J Croner, K Purpura, and et al. Response variability in retinal ganglion cells of primates. Proc Natl Acad Sci U S A , 90(17):8128-30, 1984.
[16]
T Delbruck and C A Mead. Photoreceptor circuit with wide dynamic range. In Proceedings of the International Circuits and Systems Meeting , 1994.
[17]
A M Derrington and P Lennie. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol (Load) , 357:219-40, 1984.
[18]
M P Eckert and G Buchsbaum. Efficient coding of natural time-varying images in the early visual system. Phil. Trans. Royal Soc. Lond. Biol , 339(1290):385-395, 1993.
[19]
R Etienne-Cummings, J van der Spiegel, P Mueller, and et al. Vlsi implementation of cortical visual motion detection using an analog neural computer. In D Touretzky, editor, Advances in Neural Information Processing Systems 7 , volume 7, San Mateo CA, 1997. Morgan Kaufman.
[20]
M A Freed and P Sterling. The on-alpha ganglion cell of the cat retina and its presyuaptic cell types. J Neurosci , 8(7):2303-20, 1988.
[21]
B K P Horn and B G Schunek. Determining optical flow. Artif. Intell. , 17:185-204, 1981.
[22]
M Kamermans and F Werblin. Gaba-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci , 12(7):2451-63, 1992.
[23]
E Kaplan and R M Shapley. X and y cells in the lateral geniculate nucleus of macaque monkeys. J Physio, (Load) , 330:125-43, 1982.
[24]
H. Kolb and R. Nelson. Functional neurocircuitry of amacrine cells :in the cat retina. In A. Gallego and P. Gouras, editors. Neurocircuitry of the Retina: A Cajal Memorial , pages 215-232. Elsevier, New York. 1985.
[25]
H Kolb and R Nelson. Off-alpha and off-beta gang ion cells in cat retina: Ii. neural circuitry as revealed by electron microscopy of hrp stains. J Comp Neurol , 329(1):85-110. 1993.
[26]
S W Kuffier. Discharge patterns and functional organization of mammalian retina. J. Neuraphysiol. , 16:37-68, 1953.
[27]
A G Leventhal and R W Rodieck. Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science , 213(4512):1139-42. 1981.
[28]
S Liu. Silicon model of motion adaptation in the fly. In 3rd UCSD-Caltech Symposium on Neural Computation . ftp://ftp.ini.unizh.ch/pub/shih/symp.pdf, 1996.
[29]
S Liu. Silicon retina with adaptive filtering properties. In Advances in Neural Information Processing Systems , San Mateo CA, 1998. Morgan-Kaufman.
[30]
G Maguire, P Lukasiewicz. and et al. Amacrine cell interactions underlying the response to change in the tiger salamander retina. J Neurosci. , 9(2):726-35. 1989.
[31]
C A Mead. Analog VLSI and Neural Systems . Addison Wesley, Reading MA, 1989.
[32]
A Pavasovic, A G Andreou, and C R Westgate. Characterization of subthreshold mos mismatch in trans stors for vlsi systems. J Analog Integrated Circ & Sig Proc , 6:75-84, 1994.
[33]
J. L. Polyak. The Retina . Chicago Press, Chicago IL, 1941.
[34]
R W Rodieck. The primate retina. Comp. Primate Biol. , 4:203-278, 1988.
[35]
R G Smith. Simulation of an anatomically define local circuit -- the cone-horizontal cell network in cat retina. Visual Neurosci. , 12(3):545-561, May-Jun 1995.
[36]
J Tanner and C Mead. Optical motion sensor. In Analog VLSI and Neural Systems , chapter 14, pages 229-255. Addison-Wesley. Reading MA, 1989.
[37]
E Vittoz and X Arreguit. Linear networks based on transistors. Electronics Letters , 29:297-299: 1993.
[38]
M Watanabe and R W Rodieck. Parasol and midget ganglion cells of the primate retina. J Comp. Neurol , 289(3):434-54, 1989.
[39]
A B Watson and A J Ahumada, Jr. Model of human visual-motion sensing. J Opt Soc Am , 2(2):322-342, 1985.

Cited By

View all
  • (2002)Coupling an a VLSI Neuromorphic vision chip to a neurotrophic model of synaptic plasticityNeural Computation10.1162/0899766026029325614:10(2353-2370)Online publication date: 1-Oct-2002

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
MICRONEURO '99: Proceedings of the 7th International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems
April 1999
ISBN:0769500439

Publisher

IEEE Computer Society

United States

Publication History

Published: 07 April 1999

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2002)Coupling an a VLSI Neuromorphic vision chip to a neurotrophic model of synaptic plasticityNeural Computation10.1162/0899766026029325614:10(2353-2370)Online publication date: 1-Oct-2002

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media