Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/846231.849030guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Parameter Specification for Fuzzy Clustering by Q-Learning

Published: 24 July 2000 Publication History

Abstract

In this paper, we propose a new method to specify the sequence of parameter values for a fuzzy clustering algorithm by using Q-learning. In the clustering algorithm, we employ similarities between two data points and distances from data to cluster centers as the fuzzy clustering criteria. The fuzzy clustering is achieved by optimizing an objective function, which is solved by the Picard iteration. The fuzzy clustering algorithm might be useful but its result depends on the parameter specifications. To conquer the dependency on the parameter values, we use Q-learning to learn the sequential update for the parameters during the iterative optimization procedure of the fuzzy clustering. In the numerical example, we show how the clustering validity improves by the obtained parameter update sequences.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
IJCNN '00: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)-Volume 4 - Volume 4
July 2000
ISBN:0769506194

Publisher

IEEE Computer Society

United States

Publication History

Published: 24 July 2000

Author Tags

  1. Fuzzy Clustering
  2. Parameter Specification
  3. Reinforcement Learning

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media