It is well known that, using standard models of computation, it requires $\Omega(n$ log $n$) time to build a Voronoi diagram for $n$ data points. This follows from the fact that a Voronoi diagram algorithm can be used to sort. But if the data points are sorted before we start, can the Voronoi diagram be built any faster? We show that for certain interesting, although nonstandard types of Voronoi diagrams, sorting helps. These nonstandard types Voronoi diagrams use a convex distance function instead of the standard Euclidean distance. A convex distance function exists for any convex shape, but the distance functions based on polygons (especially triangles) lead to particularly efficient Voronoi diagram algorithms fast algorithms using simple data structures. Specifically, a Voronoi diagram using a convex distance function based on a triangle can be built in $O(n$ log log $n$) time after initially sorting the $n$ data points twice. Convex distance functions based on other polygons require more initial sorting.
Recommendations
Sorting helps for voronoi diagrams
It is well known that, using standard models of computation, Ω(n logn) time is required to build a Voronoi diagram forn point sites. This follows from the fact that a Voronoi diagram algorithm can be used to sort. However, if the sites are sorted before ...
Bregman Voronoi Diagrams
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define various ...
Abstract Voronoi diagrams revisited
Abstract Voronoi diagrams [R. Klein, Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer Science, vol. 400, Springer-Verlag, 1987] were designed as a unifying concept that should include as many concrete types of diagrams as possible. To ...