Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/982792.982904acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article

On the number of rectangular partitions

Published: 11 January 2004 Publication History

Abstract

How many ways can a rectangle be partitioned into smaller ones? We study two variants of this problem: when the partitions are constrained to lie on n given points (no two of which are corectilinear), and when there are no such constraints and all we require is that the number of (non-intersecting) segments is n. In the first case, when the order (permutation) of the points conforms with a certain property, the number of partitions is the (n + 1)st Baxter number, B(n + 1); the number of permutations conforming with the property is the (n - 1)st Schröder number; and the number of guillotine partitions is the nth Schröder number. In the second case, it is known [22] that the number of partitions and the number of guillotine partitions correspond to the Baxter and Schröder numbers, respectively. Our contribution is a bijection between permutations and partitions. Our results provide interesting and new geometric interpretations to both Baxter and Schröder numbers and suggest insights regarding the intricacies of the interrelations.

References

[1]
G. BAXTER, On fixed points of the composite of commuting functions, Proc. Amer. Math. Soc., 15 (1964), 851--855.
[2]
F. C. CALHEIROS, A. LUCENA, AND C. C. DE SOUZA, Optimal rectangular partitions, Networks, 41:1 (2003), 51--67.
[3]
M. CARDEI, X. CHENG, X. CHENG, AND D. Z. DU, A tale on guillotine cut, Proc. Novel Approaches to Hard Discrete Optimization, Ontario, Canada, 2001.
[4]
F. R. K. CHUNG, R. L. GRAHAM, V. E. HOGGATT, AND M. KLEIMAN, The number of Baxter permutations, J. Combin. Theory, Ser. A, 24 (1978), 382--394.
[5]
C. N. DE MENESESAND C. C. DE SOUZA, Exact solutions of rectangular partitions via integer programming, Int. J. of Computational Geometry and Applications, 10 (2000), 477--522.
[6]
D. Z. DU, L. Q. PAN, AND M. T. SHING, Minimum edge length guillotine rectangular partition, Technical Report MSRI 02418-86, University of California, Berkeley, CA, 1986.
[7]
S. DULUCQAND O. GUIBERT, Baxter permutations, Discrete Mathematics, 180 (1998), 143--156.
[8]
T. F. GONZALEZAND S.-Q. ZHENG, Bounds for Partitioning Rectilinear Polygons, Proc. 1st Ann. ACM Symp. on Computational Geometry, Baltimore, MD, 1985, 281--287.
[9]
T. F. GONZALEZAND S.-Q. ZHENG, Improved bounds for rectangular and guillotine partitions, J. of Symbolic Computation, 7 (1989), 591--610.
[10]
T. F. GONZALEZAND S.-Q. ZHENG, Approximation algorithms for partitioning a rectangle with interior points, Algorithmica, 5 (1990), 11--42.
[11]
X. HONG, G. HUANG, Y. CAI, J. GU, S. DONG, C. K. CHENG, AND J. GU, Corner block list: An effective and efficient topological representation of non-slicing floorplan, Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose, CA, 2000, 8--12.
[12]
C. LEVCOPOULOS, Fast heuristics for minimum length rectangular partitions of polygons, Proc. 2nd Ann. ACM Symp. on Computational Geometry, Yorktown Heights, NY, 1986, 100--108.
[13]
A. LINGAS, R. Y. PINTER, R. L. RIVEST, AND A. SHAMIR, Minimum edge length rectilinear decompositions of rectilinear figures, Proc. 20th Ann. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, 1982, 53--63.
[14]
J. S. B. MITCHELL, Guillotine subdivisions: Part II--A simple polynomial-time approximation scheme for geometric k-MST, TSP, and related problem, SIAM J. on Computing, 28 (1999), 1298--1309.
[15]
H. MURATA, K. FUJIYOSHI, T. WATANABE, AND Y. KAJITANI, A mapping from sequence-pair to rectangular dissection, Proc. Asia and South Pacific Design Automation Conf. Chiba, Japan, 1997, 625--633.
[16]
R. L. RIVEST, The "PI" (placement and interconnect) system, Proc. 19th ACM-IEEE Design Automation Conference, Las Vegas, NV, 1982, 475--481.
[17]
K. SAKANUSHIAND Y. KAJITANI, The quarter-state sequence (Q-sequence) to represent the floorplan and applications to layout optimization, Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, Tianjin, China, 2000, 829--832.
[18]
L. SHAPIRO and A. B. STEPHENS, Bootstrap percolation, the Schröder numbers, and the N-Kings problem, SIAM J. on Discrete Mathematics, 4 (1991), 275--280.
[19]
R. P. STANLEY, Enumerative Combinatorics, Cambridge, Vol. 2, 1999, 239--240.
[20]
J. WEST, Generating trees and the Catalan and Schröder numbers, Discrete Mathematics, 146 (1995), 247--262.
[21]
B. YAO, H. CHEN, C. K. CHENG, AND R. GRAHAM, Revisiting floorplan representations, Proc. Int. Symp. on Physical Design, Sonoma, CA, 2001, 138--143.
[22]
B. YAO, H. CHEN, C. K. CHENG, AND R. GRAHAM, Floorplan representations: Complexity and connections, ACM Trans. on Design Automation of Electronic Systems, 8:1 (2003), 55--80.

Cited By

View all
  • (2005)An Upper Bound on the Number of Rectangulations of a Point SetProceedings of the 11th Annual International Conference on Computing and Combinatorics - Volume 359510.5555/2958119.2958137(554-559)Online publication date: 16-Aug-2005

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms
January 2004
1113 pages
ISBN:089871558X

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 11 January 2004

Check for updates

Author Tags

  1. Baxter permutations
  2. Schröder numbers
  3. guillotine partitions
  4. quasimonotone permutations
  5. rectangular partitions

Qualifiers

  • Article

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2005)An Upper Bound on the Number of Rectangulations of a Point SetProceedings of the 11th Annual International Conference on Computing and Combinatorics - Volume 359510.5555/2958119.2958137(554-559)Online publication date: 16-Aug-2005

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media