Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Design of Nonstandard Waveguide Slot Array Antenna for High‐Power Applications

Published: 24 December 2024 Publication History

Abstract

Waveguide slot array antennas are extensively used in radar systems, satellite communications, and wireless networks due to their high gain, low side lobe levels, and good impedance matching. Conversely, designing these antennas for high‐power scenarios with non‐standard configurations presents challenges. This paper proposes a novel Mode Matching Based Deep Neural Method (MMbDNM) to optimize the design and performance of waveguide slot array antennas. By integrating deep learning with mode‐matching techniques, the method streamlines antenna design, reducing development time and cost while maintaining high performance across multiple frequency bands. The proposed (MMbDNM) method achieves a frequency of 10.4 GHz; the antenna achieves a high coupling coefficient of 0.99, indicating efficient energy transfer between slots. The power handling capability of 0.99 W ensures robust performance under high‐power conditions, while the radiation pattern with a gain of 0.95 dB suggests effective signal propagation. Additionally, a bandwidth of 1.1 GHz allows for versatile application across a range of frequencies, contributing to the antenna's overall efficiency and adaptability. The results demonstrate improved antenna efficiency and adaptability, making it ideal for waveguide junctions used in complex electromagnetic systems.

Graphical Abstract

The proposed Mode Matching Based Deep Neural Method (MMbDNM) optimizes waveguide slot array antenna designs, enhancing coupling efficiency, and minimizing signal loss.
By integrating deep learning techniques, this approach streamlines the design process, reduces costs, and improves performance in high‐power applications compared to traditional methods.

References

[1]
P. Liu, F. P. Gert, and Z. Shuai, “Wideband Slot Array Antenna Fed by Open‐Ended Rectangular Waveguide at W‐Band,” IEEE Antennas and Wireless Propagation Letters 21, no. 4 (2022): 666–670.
[2]
S. Ghorbani, S. A. Razavi, M. H. Ostovarzadeh, and A. Farahbakhsh, “Development of a Center‐Fed Slot Array Antenna With Very Low Side Lobes Using Ridge Gap Waveguide (RGW) Technology,” AEU‐International Journal of Electronics and Communications 125 (2020): 153385.
[3]
G. A. Casula, G. Mazzarella, and G. Montisci, “Improved Design Techniques for High Performance Planar Waveguide Slot Arrays,” in 2019 PhotonIcs & Electromagnetics Research Symposium‐Spring (PIERS‐Spring) (Rome, Italy: IEEE, 2019), 2819–2829.
[4]
K. C. Dimitrov, L. Yongshik, M. Byung‐Wook, P. Jeongwoo, J. Jihoon, and K. Hweong‐J, “Circularly Polarized T‐Shaped Slot Waveguide Array Antenna for Satellite Communications,” IEEE Antennas and Wireless Propagation Letters 19, no. 2 (2019): 317–321.
[5]
B. Duan, Z. Shijiu, Z. Miao, H. Jiro, and H. L. Qing, “A Broadband Full‐Corporate‐Fed Slot Array Antenna Based on the Single‐Layer Substrate Integrated Waveguide,” IEEE Access 11 (2023): 20230–20239.
[6]
X. Yi and W. Hang, “Wideband Substrate Integrated Waveguide Fed Open Slot Antenna Array,” IEEE Access 8 (2020): 74167–74174.
[7]
X. Yang, Q. L. Xian, W. Bao, and S. Yihong, “A Dual‐Wideband Structure‐Shared Antenna With Self‐Diplexing Property for High‐Power Microwave Application,” IEEE Transactions on Antennas and Propagation 69, no. 7 (2020): 4201–4205.
[8]
P. Li, L. Shaowei, X. Quan, and Q. Shi‐Wei, “60 GHz Dual‐Polarized High‐Gain Planar Aperture Antenna Array Based on LTCC,” IEEE Transactions on Antennas and Propagation 68, no. 4 (2019): 2883–2894.
[9]
Y. Cheng and D. Yuandan, “Wideband Circularly Polarized Planar Antenna Array for 5G Millimeter‐Wave Applications,” IEEE Transactions on Antennas and Propagation 69, no. 5 (2020): 2615–2627.
[10]
G. Sun and W. Hang, “Millimeter‐Wave High‐Gain Magneto‐Electric Dipole Antenna Array With Pillbox Corporate Feed Network,” IEEE Transactions on Antennas and Propagation 69, no. 9 (2021): 5631–5639.
[11]
G. Su, S. L. Eric, K. Ting‐Wei, J. Huayan, C. Yi‐Chyun, and C. Kuo‐Sheng, “79‐GHz Wide‐Beam Microstrip Patch Antenna and Antenna Array for Millimeter‐Wave Applications,” IEEE Access 8 (2020): 200823–200833.
[12]
J. Y. Lee, J. Choi, D. Choi, Y. Youn, and W. Hong, “Broadband and Wide‐Angle Scanning Capability in Low‐Coupled Mm‐Wave Phased‐Arrays Incorporating ILA With HIS Fabricated on FR‐4 PCB,” IEEE Transactions on Vehicular Technology 70, no. 3 (2021): 2076–2088.
[13]
M. Farahani, A. Mohammad, N. Mourad, S. Abdel‐Razik, and A. D. Tayeb, “Millimeter‐Wave Dual Left/Right‐Hand Circularly Polarized Beamforming Network,” IEEE Transactions on Antennas and Propagation 68, no. 8 (2020): 6118–6127.
[14]
L. Gu, Y. Wanchen, X. Quan, and C. Wenquan, “A Dual‐Band Steerable Dual‐Beam Metasurface Antenna Based on Common Feeding Network,” IEEE Transactions on Antennas and Propagation 69, no. 10 (2021): 6340–6350.
[15]
M. Nasri, Z. Davoud, and U. Z. Ashtaf, “A Wideband 3‐dB Directional Coupler in GGW for Use in V‐Band Communication Systems,” IEEE Access 8 (2020): 17819–17823.
[16]
S. Priya, K. Kumar, S. Dwari, and M. K. Mandal, “Circularly Polarized Self‐Diplexing SIW Cavity Backed Slot Antennas,” IEEE Transactions on Antennas and Propagation 68, no. 3 (2019): 2387–2392.
[17]
Q. Zhang, Z. Mingtao, S. Xiaowei, et al., “A Low‐Profile Beam‐Steering Reflectarray With Integrated Leaky‐Wave Feed and 2‐Bit Phase Resolution for Ka‐Band SatCom,” IEEE Transactions on Antennas and Propagation 70, no. 3 (2021): 1884–1894.
[18]
A. P. Laguna, D. Cavallo, J. J. Baselmans, and N. Llombart, “Focused Connected Array Antenna as a Broadband Beam‐Steering Feed for Quasi‐Optical System,” IEEE Transactions on Antennas and Propagation 70, no. 7 (2022): 5995–6000.
[19]
J. Qin, F. Xuedong, S. Mingyu, R. Qiang, and C. Aixin, “Frequency Reconfigurable Antenna Based on Substrate Integrated Waveguide for S‐Band and C‐Band Applications,” IEEE Access 9 (2020): 2839–2845.
[20]
S. Kumar, A. Sharma, S. Kalra, and M. Kumar, “Communication Quality‐Conscious Synthesis of 3‐D Coverage Using Switched Multibeam Multi‐Sector Array Antenna for V2I Application,” IEEE Transactions on Vehicular Technology 71, no. 2 (2021): 1631–1642.
[21]
Q. You, W. Yi, H. Mingjian, H. Jifu, Z. Zi‐Wei, and L. Yunlong, “Wideband Dual‐Polarized Hollow‐Waveguide Slot Array Antenna,” IEEE Transactions on Antennas and Propagation 70, no. 10 (2022): 9326–9336.
[22]
T. Badawy, T. Bertuch, C. Loecker, and P. Knott, “High Gain Frequency Scanning Antenna Using Dumbbell‐Shaped Inclined Slots and Parallel Plate Waveguide Polariser,” IET Microwaves, Antennas & Propagation 16, no. 9 (2022): 553–566.
[23]
W. Yin, C. Ang, L. Xiuye, et al., “Frequency Scanning Single‐Ridge Serpentine Dual‐Slot‐Waveguide Array Antenna,” IEEE Access 8 (2020): 77245–77254.
[24]
A. Ohadi and G. V. Eleftheriades, “Slotted Waveguide Frequency‐Scanned Slow‐Wave Antenna With Reduced Sensitivity of the Closed Stopband at Millimeter‐Wave Frequencies,” IEEE Access 10 (2022): 27783–27793.
[25]
N. Kumar, A. Gupta, M. K. Dwivedi, B. M. Jha, and A. K. Sharma, “Design of Edge Slotted Waveguide Scanned Linear Array Antenna With Low Side Lobe Levels for X‐Band Radar Applications,” in 2023 International Conference on Computer, Electronics & Electrical Engineering & Their Applications, (IC2E3) (Srinagar, India: IEEE, 2023), 1–4.
[26]
S. Das, K. Mohankumar, C. A. Sreejith, I. A. Khan, and K. S. Beenamole, “Design of Cavity Backed Slot Array Antenna for Radar Applications,” in In 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON) (Bangalore, India: IEEE, 2022), 1932–1936.
[27]
R. S. Chen, Z. C. Liao, P. F. Qin, et al., “Wideband Full‐Metal Cavity‐Backed Filtering Slot Antenna Based on Resonant‐Iris Mode,” IEEE Transactions on Antennas and Propagation 72 (2024): 8828–8833.
[28]
H. Abedi, M. M. Taskhiri, and E. Hadian, “Design and Analysis of Multi‐Layer SIW Coupler to Use in Phased Array Antenna Feed Network,” Journal of Engineering 3 (2023): e12235.
[29]
F. Karami, P. Rezaei, A. Amn‐e‐Elahi, and A. Abolfathi, “An X‐Band Substrate Integrated Waveguide Fed Patch Array Antenna: Overcoming Low Efficiency, Narrow Impedance Bandwidth, and Cross‐Polarization Radiation Challenges,” IEEE Antennas and Propagation Magazine 63, no. 5 (2021): 25–32.
[30]
D. Zarifi, A. Farahbakhsh, and A. U. Zaman, “Design of a Dual‐CP Gap Waveguide Fed Aperture Array Antenna,” in Design of a Dual‐CP Gap Waveguide Fed Aperture Array Antenna, vol. 17 (IET Microwaves: Antennas & Propagation, 2023), 723–730.
[31]
J. Sobolewski and Y. Yashchyshyn, “State of the Art Sub‐Terahertz Switching Solutions,” IEEE Access 10 (2022): 12983–12999.
[32]
A. A. Diman, F. Karami, P. Rezaei, et al., “Efficient SIW‐Feed Network Suppressing Mutual Coupling of Slot Antenna Array,” IEEE Transactions on Antennas and Propagation 69, no. 9 (2021): 6058–6063.
[33]
S. Banerjee and S. K. Parui, “Bandwidth Improvement of Substrate Integrated Waveguide Cavity‐Backed Slot Antenna With Dielectric Resonators,” Microsystem Technologies 26 (2020): 1359–1368.
[34]
M. S. El‐Din, S. I. Shams, A. M. M. A. Allam, A. Gaafar, H. M. Elhennawy, and M. F. A. Sree, “SIGW Based MIMO Antenna for Satellite Down‐Link Applications,” IEEE Access 10 (2022): 35965–35976.
[35]
K. T. Lo and H. Wong, “Wideband Millimetre‐Wave Dielectric Resonator Antenna Fed by a Wide Aperture,” IEEE Access 12 (2024): 14521–14531.
[36]
X. Zhang, Z. Chen, and X. Ye, “A W‐Band High‐Gain Low‐Sidelobe Circular‐Shaped Monopulse Antenna Array Based on Dielectric Loaded Waveguide,” IEEE Access 12 (2024): 64997–65006.
[37]
S. Wu, J. Li, Y. Li, S. Yan, and X. Y. Zhang, “SLM Printed Dual‐Band Dual‐Polarized Shared‐Aperture Filtering Antenna Array for Millimeter‐Wave Integrated Sensing and Communication,” IEEE Transactions on Antennas and Propagation 72, no.3 (2024): 1–5.
[38]
E. M. Mohamed, A. Mchbal, A. Marroun, and N. A. Touhami, “Antenna Feeding Network Design for 5G Massive MIMO Applications,” in In 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST) (Marrakesh, Morocco: IEEE, April 2024), 1–5.
[39]
N. Calik, F. Güneş, S. Koziel, A. Pietrenko‐Dabrowska, M. A. Belen, and P. Mahouti, “Deep‐Learning‐Based Precise Characterization of Microwave Transistors Using Fully‐Automated Regression Surrogates,” Scientific Reports 13, no. 1 (2023): 14–45.
[40]
S. Simon, G. M. Schwarz, A. Aichmair, et al., “Fully Automated Deep Learning for Knee Alignment Assessment in Lower Extremity Radiographs: A Cross‐Sectional Diagnostic Study,” Skeletal Radiology 1‐11 (2022): 1249–1259.

Index Terms

  1. Design of Nonstandard Waveguide Slot Array Antenna for High‐Power Applications
                Index terms have been assigned to the content through auto-classification.

                Recommendations

                Comments

                Information & Contributors

                Information

                Published In

                cover image Transactions on Emerging Telecommunications Technologies
                Transactions on Emerging Telecommunications Technologies  Volume 36, Issue 1
                January 2025
                357 pages
                EISSN:2161-3915
                DOI:10.1002/ett.v36.1
                Issue’s Table of Contents

                Publisher

                John Wiley & Sons, Inc.

                United States

                Publication History

                Published: 24 December 2024

                Author Tags

                1. communication system
                2. electromagnetic wave
                3. microwave spectrum
                4. mode‐matching deep neural network
                5. slot antenna array
                6. waveguide network

                Qualifiers

                • Research-article

                Contributors

                Other Metrics

                Bibliometrics & Citations

                Bibliometrics

                Article Metrics

                • 0
                  Total Citations
                • 0
                  Total Downloads
                • Downloads (Last 12 months)0
                • Downloads (Last 6 weeks)0
                Reflects downloads up to 09 Feb 2025

                Other Metrics

                Citations

                View Options

                View options

                Figures

                Tables

                Media

                Share

                Share

                Share this Publication link

                Share on social media