Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A rules‐firing strength‐based neuro‐fuzzy observer for information‐poor systems

Published: 28 January 2021 Publication History

Abstract

In this paper, a neuro‐fuzzy observer (NFO) is proposed for estimating the unmeasured states of an information‐poor system by relaxing the strictly positive real condition (without using filtered fuzzy basis function (FBF) and filtered output estimation error) and without using high‐gain terms. To recover the performance of the observer in the absence of high‐gain terms, a concept of weighted fuzzy rules (or strengthened FBF) is proposed. The weighted fuzzy rules are then used to propose the concept of weighted function approximation which is then utilized in the design of NFO to estimate the unknown dynamical function. For reducing computational power and avoiding over‐tuning of the weights, a concept of relay‐switching is also introduced in the design of the NFO. The stability analysis of the proposed NFO is also presented using Lyapunov approach and the effectiveness of the proposed scheme is demonstrated through a simulation example.

References

[1]
Canudas De Wit C, Slotine J‐J. Sliding observers for robot manipulators. Automatica. 1991;27:859‐864.
[2]
Mohamed M, Karim T, Safya B. Sliding mode observer for nonlinear mechanical systems subject to nonsmooth impacts. In: International Multi‐Conference on Systems, Signals and Devices; 2010:1‐6.
[3]
Dinh HT, Kamalapurkar R, Bhasin S, Dixon WE. Dynamic neural network‐based robust observers for uncertain nonlinear systems. Neural Net. 2014;60:44‐52.
[4]
Freidovich LB, Khalil HK. Performance recovery of feedback‐linearization‐based designs. IEEE Trans Automat Control.2008;53:2324‐2334.
[5]
Khalil HK. High‐gain observers in nonlinear feedback control. In: Advances in Design and Control, Society for Industrial and Applied Mathematics; 2017.
[6]
Wallam F, Memon AY. A robust control scheme for nonlinear non‐isothermal uncertain jacketed continuous stirred tank reactor. J Process Control. 2017;51:55‐67.
[7]
Wallam F, Tan CP. Output feedback cross‐coupled nonlinear PID based MIMO control scheme for pressurized heavy water reactor. J Franklin Institute. 2019;356:8012‐8048.
[8]
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2:359‐366.
[9]
Wang LX, Mendel JM. Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans Neural Netw. 1992;3(no. 5):807‐814.
[10]
Leu YG, Wang WY. Observer based direct adaptive fuzzy‐neural control for nonaffine nonlinear systems. IEEE Trans Neural Netw. 2005;16(4):853‐861.
[11]
Wallam F, Abbas A, Abbasi AR. Design and tuning of a decentralized fuzzy logic controller for a MIMO type pressurized heavy water reactor. Ann Nucl Energy. 2015;85:1104‐1114.
[12]
Chen B, Zhang H, Liu X, Lin C. Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Trans Neural Netw Learn Syst. 2018;29(9):4261‐4271.
[13]
Park JH, Park GT, Kim SH, Moon CJ. Output feedback control of uncertain nonlinear systems using a self‐structuring adaptive fuzzy observer. Fuzzy Sets Syst. 2005;151:21‐42.
[14]
Kim YH, Lewis FL, Abdallah CT. A dynamic recurrent neural‐network‐based adaptive observer for a class of nonlinear systems. Automatica. 1997;33(8):1539‐1543.
[15]
Choi JY, Farrell J. Adaptive observer for a class of nonlinear systems using neural networks. In: Proceedings of the IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, Cambridge, MA; 1999:114‐119.
[16]
Wallam F, Abbasi AR. Evaluating the transient handling capability of a fuzzy logic controller for a pressurized heavy water reactor. J Contr Eng Appl Inform. 2014;16(2):40‐48.
[17]
Wang WY, Chan ML, Hsu CC, Lee TT. Tracking‐based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy‐neural approach. IEEE Trans Syst Man Cybern B Cybern. 2002;32(4):483‐492.
[18]
Musavi N, Keighobadi J. Adaptive fuzzy neuro‐observer applied to low cost INS/GPS. Appl Soft Comput. 2015;29:82‐94.
[19]
Chen CS. Robust Self‐organizing neural‐fuzzy control with uncertainty observer for MIMO nonlinear systems. IEEE Trans Fuzzy Syst. 2011;19(4):694‐706.
[20]
Melin P, Castillo O. Intelligent control of a stepping motor drive using an adaptive neuro‐fuzzy inference system. Inf Sci. 2005;170(No. 2‐4):133‐151.
[21]
Castillo O, Melin P. Intelligent adaptive model‐based control of robotic dynamic systems with a hybrid fuzzy‐neural approach. Appl Soft Comput. 2003;3(No. 4):363‐378.
[22]
Melin P, Castillo O. Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl Soft Comput. 2003;3(No. 4):353‐362.
[23]
Leu YG, Lee TT, Wang WY. Observer‐based adaptive fuzzy‐neural control for unknown nonlinear dynamical systems. IEEE Trans Syst Man Cybern. 1999;29(5):583‐591.
[24]
Park JH, Park G‐T. Adaptive fuzzy observer with minimal dynamic order for uncertain nonlinear systems. IEEE Proc Control Theory Appl. 2003;150(2):189‐197.
[25]
Esmahi L, Williamson K, Badidi E. Adaptive neuro‐fuzzy systems. Encyclopedia Artif Intell. 2009;1:31‐36.
[26]
Postlethwaite BE. Building a model‐based fuzzy controller. Fuzzy Set Syst. 1996;79:3‐13.
[27]
Tan WW, Dexter AL. A self‐learning fuzzy controller for embedded applications. Automatica. 2000;36:1189‐1198.
[28]
Ridley JN, Shaw IS, Kruger JJ. Probabilistic fuzzy model for dynamic systems. Electron Lett. 1988;24:890‐892.
[29]
Boulkroune A, Tadjine M, M'Saad M, Farza M. Design of a unified adaptive fuzzy observer for uncertain nonlinear systems. Inf Sci. 2014;265:139‐153.
[30]
Wang LX. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice‐Hall; 1994.
[31]
Pedrycz W. Why triangular membership functions. Fuzzy Set Syst. 1994;64:21‐30.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Intelligent Systems
International Journal of Intelligent Systems  Volume 36, Issue 3
March 2021
355 pages
ISSN:0884-8173
DOI:10.1002/int.v36.3
Issue’s Table of Contents

Publisher

John Wiley and Sons Ltd.

United Kingdom

Publication History

Published: 28 January 2021

Author Tags

  1. adaptive observer
  2. neuro‐fuzzy observer
  3. robust estimation
  4. strengthened fuzzy basis function

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media