Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-24021-3_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Janet Bases and Resolutions in CoCoALib

Published: 14 September 2015 Publication History

Abstract

Recently, the authors presented a novel approach to computing resolutions and Betti numbers using Pommaret bases. For Betti numbers, this algorithm is for most examples much faster than the classical methods typically by orders of magnitude. As the problem of ï ź-regularity often makes the determination of a Pommaret basis rather expensive, we extend here our algorithm to Janet bases. Although in ï ź-singular coordinates, Janet bases may induce larger resolutions than the corresponding Pommaret bases, our benchmarks demonstrate that this happens rarely and has no significant effect on the computation costs.

References

[1]
Abbott, J., Bigatti, A.: CoCoALib 0.99535: a C++ library for doing computations in commutative algebra 2014. http://cocoa.dima.unige.it/cocoalib
[2]
Albert, M., Fetzer, M., Sáenz-de Cabezón, E., Seiler, W.: On the free resolution induced by a Pommaret basis. J. Symb. Comp. 68, 4---26 2015
[3]
Albert, M., Hashemi, A., Pytlik, P., Schweinfurter, M., Seiler, W.: Deterministic genericity for polynomial ideals. Preprint in preparation 2015
[4]
Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 --- a computer algebra system for polynomial computations 2012. http://www.singular.uni-kl.de
[5]
Gerdt, V., Blinkov, Y.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 519---542 1998
[6]
Gerdt, V., Blinkov, Y.: Minimal involutive bases. Math. Comp. Simul. 45, 543---560 1998
[7]
Grayson, D., Stillman, M.: Macaulay2 1.6, a software system for research in algebraic geometry 2013. http://www.math.uiuc.edu/Macaulay2/
[8]
Hausdorf, M., Sahbi, M., Seiler, W.: - and quasi-regularity for polynomial ideals. In: Calmet, J., Seiler, W., Tucker, R. eds. Global Integrability of Field Theories, pp. 179---200. Universitätsverlag Karlsruhe, Karlsruhe 2006
[9]
Jöllenbeck, M., Welker, V.: Minimal Resolutions via Algebraic Discrete Morse Theory. Memoirs Amer. Math. Soc. 197, Amer. Math. Soc. 2009
[10]
Schreyer, F.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraβschen Divisionssatz. Master's thesis, Fakultät für Mathematik, Universität Hamburg 1980
[11]
Seiler, W.: A combinatorial approach to involution and -regularity I: Involutive bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20, 207---259 2009
[12]
Seiler, W.: A combinatorial approach to involution and -regularity II: Structure analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm. Comp. 20, 261---338 2009
[13]
Seiler, W.: Involution --- The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer-Verlag, Berlin 2010
[14]
Sköldberg, E.: Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc. 358, 115---129 2006
[15]
Sköldberg, E.: Resolutions of modules with initially linear syzygies. Preprint arXiv:1106.1913 2011
[16]
Yanovich, D., Blinkov, Y., Gerdt, V.: Benchmarking 2001. http://invo.jinr.ru/ginv/benchmark.html

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
CASC 2015: Proceedings of the 17th International Workshop on Computer Algebra in Scientific Computing - Volume 9301
September 2015
492 pages
ISBN:9783319240206

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 14 September 2015

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media