Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-91908-9_10guidebooksArticle/Chapter ViewAbstractPublication PagesBookacm-pubtype
chapter

Green Computing Algorithmics

Published: 11 March 2022 Publication History

Abstract

We discuss what green computing algorithmics is, and what a theory of energy as a computational resource isn’t. We then present some open problems in this area, with enough background from the literature to put the open problems in context. This background should also be a reasonably representative sample of the green computing algorithmics literature.

References

[1]
Vision and roadmap: routing telecom and data centers toward efficient energy use. In: Proceedings of Vision and Roadmap Workshop on Routing Telecom and Data Centers Toward Efficient Energy Use, May 2009
[2]
Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
[3]
Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained by dual fitting. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1228–1241 (2012)
[4]
Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. In: Conference on Learning Theory, pp. 741–763 (2013)
[5]
Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with (dis)economies of scale. In: IEEE Symposium on Foundations of Computer Science, pp. 585–592 (2010)
[6]
Andrews, M., Fernández, A., Zhang, L., Zhao, W.: Routing for energy minimization in the speed scaling model. In: INFOCOM, pp. 2435–2443 (2010)
[7]
Antoniadis, A., Barcelo, N., Consuegra, M., Kling, P., Nugent, M., Pruhs, K., Scquizzato, M.: Efficient computation of optimal energy and fractional weighted flow trade-off schedules. In: Symposium on Theoretical Aspects of Computer Science (2014)
[8]
Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., Scquizzato, M.: Chasing convex bodies and functions. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 68–81. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49529-2_6
[9]
Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Complexity-theoretic obstacles to achieving energy savings with near-threshold computing. In: International Green Computing Conference, pp. 1–8 (2014)
[10]
Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Energy-efficient circuit design. In: Innovations in Theoretical Computer Science, pp. 303–312 (2014)
[11]
Antoniadis, A., Im, S., Krishnaswamy, R., Moseley, B., Nagarajan, V., Pruhs, K., Stein, C.: Energy efficient virtual circuit routing. In: ACM-SIAM Symposium on Discrete Algorithms (2014)
[12]
Bansal, N., Gupta, A., Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Multicast routing for energy minimization using speed scaling. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 37–51. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34862-4_3
[13]
Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 96–109 (2015)
[14]
Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 3 (2007)
[15]
Barcelo, N., Cole, D., Letsios, D., Nugent, M., Pruhs, K.: Optimal energy trade-off schedules. Sustain. Comput.: Inf. Syst. 3, 207–217 (2013)
[16]
Barcelo, N., Kling, P., Nugent, M., Pruhs, K.: Optimal speed scaling with a solar cell. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 521–535. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_38
[17]
Barcelo, N., Kling, P., Nugent, M., Pruhs, K., Scquizzato, M.: On the complexity of speed scaling. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 75–89. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_7
[18]
Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Almost all functions require exponential energy. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 90–101. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_8
[19]
Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: The power of heterogeneity in near-threshold computing. In: International Green and Sustainable Computing Conference, pp. 1–4 (2015)
[20]
Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)
[21]
Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. In: ACM Symposium on Theory of Computing, pp. 463–472 (2003)
[22]
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
[23]
Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39(4), 745–763 (1992)
[24]
Bower, F.A., Sorin, D.J., Cox, L.P.: The impact of dynamically heterogeneous multicore processors on thread scheduling. IEEE Micro 28(3), 17–25 (2008)
[25]
Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)
[26]
Butts, J.A., Sohi, G.S.: A static power model for architects. In: ACM/IEEE International Symposium on Microarchitecture, pp. 191–201 (2000)
[27]
Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked terminals, and routing problems. In: ACM Symposium on Theory of Computing, pp. 183–192 (2005)
[28]
Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.N.: Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE 98(2), 253–266 (2010)
[29]
Esmaeilzadeh, H., Blem, E.R., Amant, R.S., Sankaralingam, K., Burger, D.: Dark silicon and the end of multicore scaling. IEEE Micro 32(3), 122–134 (2012)
[30]
Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32(6), 1403–1422 (2003)
[31]
Friedman, J., Linial, N.: On convex body chasing. Discret. Comput. Geom. 9, 293–321 (1993)
[32]
Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular polygons. Inf. Process. Lett. 108(3), 155–159 (2008)
[33]
Gács, P.: Reliable computation. In: Algorithms in Informatics, vol. 2. ELTE Eötvös Kiadó, Budapest (2005)
[34]
Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heterogeneous processors isn’t as easy as you think. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1242–1253 (2012)
[35]
Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear optimization with applications to speed scaling. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 173–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38016-7_15
[36]
Im, S., Kulkarni, J., Munagala, K.: Competitive algorithms from competitive equilibria: non-clairvoyant scheduling under polyhedral constraints. In: Symposium on Theory of Computing, pp. 313–322 (2014)
[37]
Im, S., Kulkarni, J., Munagala, K., Pruhs, K.: Selfishmigrate: a scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In: Symposium on Foundations of Computer Science, pp. 531–540 (2014)
[38]
Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in online scheduling. SIGACT News 42(2), 83–97 (2011)
[39]
Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005)
[40]
Khandekar, R., Rao, S., Vazirani, U.V.: Graph partitioning using single commodity flows. J. ACM 56(4), 19 (2009)
[41]
Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Cluster before you hallucinate: approximating node-capacitated network design and energy efficient routing (2014)
[42]
Kumar, R., Tullsen, D.M., Jouppi, N.P.: Core architecture optimization for heterogeneous chip multiprocessors. In: International Conference on Parallel Architectures and Compilation Techniques, pp. 23–32. ACM (2006)
[43]
Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-ISA heterogeneous multi-core architectures for multithreaded workload performance. SIGARCH Comput. Archit. News 32(2), 64 (2004)
[44]
Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach. Addison-Wesley Publishing Company, Boston (2009)
[45]
Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)
[46]
Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical load balancing. In: International Green Computing Conference, pp. 1–10 (2012)
[47]
Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity provisioning in data centers. In: Allerton Conference on Communication, Control, and Computing, pp. 1159–1163 (2011)
[48]
Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391 (2013)
[49]
Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online optimization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98–100 (2012)
[50]
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)
[51]
Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical load balancing. In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 233–244 (2011)
[52]
Merritt, R.: CPU designers debate multi-core future. EE Times, February 2008
[53]
Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M., Ayguade, E.: Performance, power efficiency and scalability of asymmetric cluster chip multiprocessors. IEEE Comput. Archit. Lett. 5(1), 4 (2006)
[54]
Mudge, T.: Power: a first-class architectural design constraint. Computer 34(4), 52–58 (2001)
[55]
Pippenger, N.: On networks of noisy gates. In: Symposium on Foundations of Computer Science, pp. 30–38 (1985)
[56]
Pruhs, K.: Competitive online scheduling for server systems. In: Special Issue of SIGMETRICS Performance Evaluation Review on New Perspectives in Scheduling, no. 4 (2007)
[57]
Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis (2004)
[58]
Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your erg. ACM Trans. Algorithms 4(3), 38:1–38:17 (2008)
[59]
Rao, S., Zhou, S.: Edge disjoint paths in moderately connected graphs. SIAM J. Comput. 39(5), 1856–1887 (2010)
[60]
Sergent, J.E., Krum, A.: Thermal Management Handbook. McGraw-Hill, New York (1998)
[61]
Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28, 59–98 (1949)
[62]
Sitters, R.: The generalized work function algorithm is competitive for the generalized 2-server problem. SIAM J. Comput. 43(1), 96–125 (2014)
[63]
Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms 5(3), 363–366 (1984)
[64]
von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 329–378. Princeton University Press, Princeton (1956)
[65]
Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM, pp. 515–519 (2013)
[66]
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

Index Terms

  1. Green Computing Algorithmics
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide books
          Computing and Software Science
          603 pages
          ISBN:978-3-319-91907-2
          DOI:10.1007/978-3-319-91908-9

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 11 March 2022

          Qualifiers

          • Chapter

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 16 Oct 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Full Access

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media