Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Removing redundant multiplicity constraints in UML class models

Published: 01 August 2019 Publication History
  • Get Citation Alerts
  • Abstract

    Models are central for the development and management of complex systems. In order to be useful along the entire life cycle of software they must provide reliable support and enable automatic management. For that purpose, they must be precise, consistent, correct, and be subject to stringent quality verification and control criteria. Model automation calls for deep formal study of models, so that tools can provide inclusive support to users. This paper deals with optimization of multiplicity constraints in Class Models, i.e., models that provide abstraction on the static structure of software. The paper introduces an in-depth analysis of redundancy of multiplicity constraints, i.e., multiplicities that cannot be realized in any legal instance. The analysis includes: (1) a formal study of gaps of redundancies in multiplicity intervals; (2) algorithmic and rule-based methods for removing redundancies in multiplicity constraints; (3) a formal study of completeness of the algorithmic procedures, with respect to most UML class model constraints. The algorithmic procedures are implemented in our FiniteSatUSE tool. To the best of our knowledge, there is no previous study of properties of multiplicity redundancy, no completeness analysis of tightening methods, and no systematic study of these features with respect to most UML class model constraints.

    References

    [1]
    Maraee, A.: UML Class Diagrams--Semantics, Correctness and Quality. Ph.D. thesis, Ben Gurion University of the Negev (2012)
    [2]
    Balaban, M., Maraee, A.: Finite satisfiability of UML class diagrams with constrained class hierarchy. ACM Trans. Softw. Eng. Methodol. TOSEM 22, 24:1---24:42 (2013)
    [3]
    Maraee, A., Balaban, M.: Inter-association constraints in UML2: comparative analysis, usage recommendations, and modeling guidelines. In: MoDELS 2012 (2012)
    [4]
    Balaban, M., Maraee, A., Sturm, A., Jelnov, P.: A pattern-based approach for improving model design quality. Softw. Syst. Model. SoSyM 1---29 (2015)
    [5]
    Balaban, M., Maraee, A.: Simplification and correctness of UML class diagram--focusing on multiplicity and aggregation/composition constraints. In: Model-Driven Engineering Languages and Systems. Volume 8107 of LNSC, pp. 454---470. Springer, Berlin (2013)
    [6]
    Maraee, A., Balaban, M.: Removing redundancies and deducing equivalences in UML class diagrams. In: Model-Driven Engineering Languages and Systems, pp. 235---251. Springer (2014)
    [7]
    OMG: UML 2.5.1. http://www.omg.org/spec/UML/2.5.1/PDF (2017)
    [8]
    OMG: Semantics of a Foundational Subset for Executable UML Models (fUML). http://www.omg.org/spec/FUML/1.3 (2017)
    [9]
    OMG: Action Language for Foundational UML Specification (ALF). http://www.omg.org/spec/ALF/1.1 (2017)
    [10]
    Costal, D., Gómez, C.: On the use of association redefinition in UML class diagrams. In: Conceptual Modeling-ER 2006, pp. 513---527. Springer (2006)
    [11]
    Kleppe, A., Rensink, A.: On a graph-based semantics for UML class and object diagrams. In: Ermel, C., Lara, J.D., Heckel, R. (eds.) Graph Transformation and Visual Modelling Techniques. Volume 10 of Electronic Communications of the EASST. EASST, Poznań (2008)
    [12]
    Alanen, M., Porres, I.: A metamodeling language supporting subset and union properties. Softw. Syst. Model. 7, 103---124 (2008)
    [13]
    Costal, D., Gómez, C., Guizzardi, G.: Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in UML. In: International Conference on Conceptual Modeling (ER 2011), pp. 189---203. Springer (2011)
    [14]
    Hamann, L., Gogolla, M.: Endogenous metamodeling semantics for structural UML 2 concepts. In: International Conference on Model Driven Engineering Languages and Systems (MODELS 2013), pp. 488---504. Springer (2013)
    [15]
    OMG: OMG Object Constraint Language (OCL). http://www.omg.org/spec/OCL/2.3.1/PDF/ (2012)
    [16]
    Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for MDA. Addison-Wesley Longman Publishing Co. Inc, Boston (2003)
    [17]
    Balaban, M., Maraee, A.: UML Class Model: Abstract Syntax and Set-Based Semantics. https://goo.gl/UJzsjb (2018)
    [18]
    Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on UML class diagrams. Artif. Intell. 168, 70---118 (2005)
    [19]
    Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE by automatic snapshot generation. J. Softw. Syst. Model. 4, 386---398 (2005)
    [20]
    Balaban, M., Maraee, A., Sturm, A.: Management of correctness problems in UML class diagrams--towards a pattern-based approach. Int. J. Inf. Syst. Model. Des. 1, 24---47 (2010)
    [21]
    Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-relationship schemata. Inf. Syst. 15, 453---461 (1990)
    [22]
    BGU Modeling Group: FiniteSatUSE--A Class Diagram Correctness Tool. https://goo.gl/svXQwj (2013)
    [23]
    Egyed, A.: Automated abstraction of class diagrams. ACM Trans. Softw. Eng. Methodol. TOSEM 11, 449---491 (2002)
    [24]
    Shoval, P., Danoch, R., Balaban, M.: Hierarchical ER diagrams (HERD)--the method and experimental evaluation. In: Olivé, A., Yoshikawa, M., Yu, E. (eds.) Advanced Conceptual Modeling Techniques, pp. 264---274. Springer, Berlin, Heidelberg (2003)
    [25]
    Wahler, M., Basin, D., Brucker, D., Koehler, K.: Efficient analysis of pattern-based constraint specifications. Softw. Syst. Model. 9, 225---255 (2010)
    [26]
    BGU Modeling Group: UML Class Diagram Patterns, Anti-Patterns and Inference Rules. http://www.cs.bgu.ac.il/~cd-patterns/ (2014)
    [27]
    Diskin, Z., Easterbrook, S.M., Dingel, J.: Engineering associations: from models to code and back through semantics. In: TOOLS (46), pp. 336---355. Springer (2008)
    [28]
    OMG: UML 2.4 Superstructure Specification. http://www.omg.org/docs/formal/07-11-04.pdf (2011)
    [29]
    Cali, A., Gottlob, G., Orsi, G., Pieris, A.: Querying UML class diagrams. In: Foundations of Software Science and Computational Structures. Number 7213 in LNCS, pp. 1---25. Springer, Berlin (2012)
    [30]
    Artale, A., Calvanese, D., Ibánez-Garcıa, A.: Full satisfiability of UML class diagrams. In: Proceedings of the 29th International Conference on Conceptual Modeling (ER 2010) (2010)
    [31]
    Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in description logics. Inf. Comput. 199, 132---171 (2005)
    [32]
    Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted UML class diagrams. Theor. Comput. Sci. 411, 301---323 (2010)
    [33]
    Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-lite: finite reasoning on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1---22 (2012)
    [34]
    Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp. 229---263. Kluwer Academic Publishers (1998)
    [35]
    Satoh, K., Kaneiwa, K., Uno, T.: Contradiction finding and minimal recovery for UML class diagrams. In: The 21st IEEE International Conference on Automated Software Engineering, pp. 277---280 (2006)
    [36]
    Rosati, R.: Finite model reasoning in DL-lite. In: The Semantic Web: Research and Applications. Volume 5021 of LNCS, pp. 215---229. Springer, Berlin (2008)
    [37]
    Angélica Ibáñez-García, Y.: Finite model reasoning in DL-lite with cardinality constraints. In: Kazakov, Y., Lembo, D., Wolter. F. (eds.) Description Logics. CEUR Workshop Proceedings (2012)
    [38]
    Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite model reasoning on UML class diagrams via constraint programming. In: AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, pp. 36---47 (2007)
    [39]
    Thalheim, B.: Entity Relationship Modeling. Foundation of Database Technology. Springer, New York (2000)
    [40]
    Calvanese, D., Lenzerini, M.: On the interaction between ISA and cardinality constraints. In: The 10th IEEE International Conference on Data Engineering (1994)
    [41]
    Hartmann, S.: Coping with inconsistent constraint specifications. In: Proceedings of the 20th International Conference on Conceptual Modeling, pp. 241---255. Springer, London (2001)
    [42]
    Boufares, F., Bennaceur, H.: Consistency problems in ER-schemas for database systems. Inf. Sci. 163, 263---274 (2004)
    [43]
    Shaikh, A., Clarisó, R., Wiil, U., Memon, N.: Verification-driven Slicing of UML/OCL models. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 185---194. ACM (2010)
    [44]
    Feinerer, I., Salzer, G.: Numeric semantics of class diagrams with multiplicity and uniqueness constraints. Softw. Syst. Model. SoSyM 13, 1167---1187 (2013)
    [45]
    Formica, A.: Finite satisfiability of integrity constraints in object-oriented database schemas. IEEE Trans. Knowl. Data Eng. 14, 123---139 (2002)
    [46]
    Maraee, A., Balaban, M.: Efficient recognition of finite satisfiability in UML class diagrams: strengthening by propagation of disjoint constraints. In: Proceedings of the International Conference on Model-Based Systems Engineering MBSE '09, pp. 1---8 (2009)
    [47]
    Maraee, A., Makarenkov, V., Balaban, B.: Efficient recognition and detection of finite satisfiability problems in UML class diagrams: handling constrained generalization sets, qualifiers and association class constraints. In: MCCM08 (2008)
    [48]
    Makarenkov, V., Jelnov, P., Maraee, A., Balaban, M.: Finite satisfiability of class diagrams: practical occurrence and scalability of the finitesat algorithm. In: MoDeVVa '09: Proceedings of the 6th International Workshop on Model-Driven Engineering, Verification and Validation, pp. 1---10. ACM (2009)
    [49]
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
    [50]
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. Web Semant. Sci. Serv. Agents World Wide Web 14, 57---83 (2012)
    [51]
    Balaban, M., Kifer, M.: Logic-based model-level software development with F-OML. In: Whittle, J., Clark, T., Kühne, T. (eds.) Model Driven Engineering Languages and Systems, pp. 517---532. Springer (2011)
    [52]
    Khitron, I., Balaban, M., Kifer, M.: The FOML Site. https://goo.gl/AgxmMc (2016)
    [53]
    Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. TOSEM 11, 256---290 (2002)
    [54]
    Jackson, D.: Software Abstractions: Logic. Language and Analysis. MIT Press, Cambridge (2006)
    [55]
    Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transformation from UML to alloy. Softw. Syst. Model. 9, 69---86 (2010)
    [56]
    Maoz, S., Ringert, J., Rumpe, B.: CD2Alloy: class diagrams analysis using alloy revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) Model Driven Engineering Languages and Systems. Volume 6981 of LNCS, pp. 592---607. Springer, Berlin (2011)
    [57]
    Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and consequences in UML and OCL models. In: Proceedings of the 3rd International Conference on Tests and Proofs. LNCS, pp. 90---104. Springer (2009)
    [58]
    Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UML/OCL models using boolean satisfiability. In: Proceedings of the Conference on Design, Automation and Test in Europe. DATE '10, European Design and Automation Association, pp. 1341---1344 (2010)
    [59]
    Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by integrating SAT solving into USE. In: TOOLS EUROPE 2011: Objects, Models, Components, Patterns, vol. 6705, pp. 290---306. Springer (2011)
    [60]
    Brucker, A., Wolff, B.: HOL-OCL: a formal proof environment for UML/OCL. In: Fundamental Approaches to Software Engineering. Volume 4961 of LNCS, pp. 97---100. Springer (2008)
    [61]
    Cabot, J., Clarisó, O., Riera, D.: UMLtoCSP: a tool for the formal verification of UML OCL models using constraint programming. In: ASE 07, The Twenty-Second IEEE-ACM International Conference on Automated Software Engineering, New York, NY, USA, pp. 547---548 (2007)
    [62]
    Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams using constraint programming. J. Syst. Softw. 93, 1---23 (2014)
    [63]
    Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas with OCL constraints. ACM Trans. Softw. Eng. Methodol. TOSEM 21, 131---1341 (2012)
    [64]
    Oriol, X., Teniente, E.: Simplification of UML/OCL schemas for efficient reasoning. J. Syst. Softw. 128, 130---149 (2017)
    [65]
    Faitelson, D., Tyszberowicz, S.: UML diagram refinement (focusing on class- and use case diagrams). In: Proceedings of the 39th International Conference on Software Engineering (ICSE 2017). ICSE '17, pp. 735---745. IEEE Press, Piscataway (2017)
    [66]
    Shoval, P., Danoch, R., Balaban, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requir. Eng. 9, 217---228 (2004)
    [67]
    Hartmann, S.: On the implication problem for cardinality constraints and functional dependencies. Ann. Math. Artif. Intell. 33, 253---307 (2001)
    [68]
    Feinerer, I., Salzer, G., Sisel, T.: Reducing multiplicities in class diagrams. In: Whittle, J., Clark, T., Kühne, T. (eds.) Model Driven Engineering Languages and Systems. Volume 6981 of LNCS, pp. 379---393. Springer, Berlin (2011)
    [69]
    Taupe, R., Falkner, A., Schenner, G.: Deriving tighter component cardinality bounds for product configuration. In: 18th International Configuration Workshop, vol. 47 (2016)
    [70]
    Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Form. Methods Syst. Des. 19, 45---80 (2001)
    [71]
    Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.M.: Formalization of the whole-part relationship in the unified modeling language. IEEE Trans. Softw. Eng. 29, 459---470 (2003)

    Cited By

    View all

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Software and Systems Modeling (SoSyM)
    Software and Systems Modeling (SoSyM)  Volume 18, Issue 4
    August 2019
    407 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 August 2019

    Author Tags

    1. Boundary tight
    2. Class models
    3. Correctness
    4. Formal semantics
    5. MBSE
    6. Model optimization
    7. Multiplicity constraints
    8. Multiplicity tightening
    9. Quality
    10. Redundancy
    11. Tightening methods
    12. Tightening rules
    13. Verification

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media