Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Ramanujan geometries of type Ãn

Published: 28 July 2003 Publication History

Abstract

We study finite graphs which are covered by the 1-skeleton of a building of type Ãn and with an extremal spectral property: they are Ãn-Ramanujan in the sense of Lubotzky. That definition is made quantitatively explicit, refined in the directed case, and a few candidates are suggested.

References

[1]
{1} N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
[2]
{2} K.S. Brown, Buildings, Springer, Berlin, 1989.
[3]
{3} D.I. Cartwright, W. Mlotkowski, Harmonic analysis for groups acting on triangle buildings, J. Austral. Math. Soc. 56 (1994) 345-383.
[4]
{4} D.I. Cartwright, W. Mlotkowski, T. Steger, Property (T) and Ã2-groups, Ann. Inst. Fourier 44 (1993) 213-248.
[5]
{5} D.I. Cartwright, T. Steger, A family of ???-groups, Israel J. Math. 103 (1998) 125-140.
[6]
{6} D.I. Cartwright, T. Steger, Elementary symmetric polynomials in numbers of modulus 1, Canad. J. Math. 54 (2002) 239-262.
[7]
{7} K. Feng, W-C.W. Li, Spectra of hypergraphs and applications, J. Number Theory 60 (1996) 1-22.
[8]
{8} R.L. Grigorchuk, A. Zuk, On the asymptotic spectrum of random walks on infinite families of graphs, in: M. Picardello, W. Woess (Eds.), Proceedings of the Cortona Conference on Random Walks and Discrete Potential Theory, Symposia Mathematica Vol. 39, Cambridge University Press, Cambridge, 1999, pp. 188-204.
[9]
{9} K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, in: K. Hashimoto, Y. Namikawa (Eds.), Automorphic Forms and Geometry of Arithmetic Varieties, Advanced Studies in Pure Math., Vol. 15, Academic Press, New York 1989, pp. 211-280.
[10]
{10} B.W. Jordan, Ron Livné, The Ramanujan property for regular cubical complexes, Duke Math. J. 105 (2000) 85-103.
[11]
{11} W. Kuich, N. Sauer, On the existence of certain minimal regular n-systems with given girth, in: F. Harary (Ed.), Proofs Techniques in Graph Theory, Academic Press, New York 1969, pp. 93-101.
[12]
{12} L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002) 1-241.
[13]
{13} W-C.W. Li, Character sums and abelian Ramanujan graphs, J. Number Theory 41 (1992) 199-217.
[14]
{14} W-C.W. Li, P. Solé, Spectra of regular graphs and hypergraphs and applications, European J. Combin. 17 (1996) 461-477.
[15]
{15} R.A. Liebler, Tactical Configurations and their Generic Ring, European J. Combin. 9 (1988) 581-592.
[16]
{16} A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhauser, Basel, 1994.
[17]
{17} A. Lubotzky, Cayley Graphs: Eigenvalues, Expanders and Random Walks, in: P. Rowlinson (Ed.), Survey in Combinatorics 95, London Mathematical Society Lecture Note Series, Vol. 218, Cambridge University Press, Cambridge, 1995, pp. 155-289.
[18]
{18} A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988) 261-277.
[19]
{19} I.G. Macdonald, Spherical functions on a group of p-adic type, Ramanujan Inst. Publications 2, University of Madras, 1971.
[20]
{20} M. Morgenstern, Existence and explicit constructions of q+1-regular Ramanujan graphs for every prime power q, J. Combin. Theory 62 (1994) 44-62.
[21]
{21} M. Morgenstern, Ramanujan diagrams, SIAM J. Discrete Math. 7 (1994) 560-570.
[22]
{22} N. Pippenger, The expected capacity of concentrators, SIAM J. Discrete Math. 4 (1991) 121-129.
[23]
{23} M. Ronan, Lectures on Buildings, Academic Press, New York, 1989.
[24]
{24} P. Solé, Ramanujan hypergraphs and Ramanujan geometries, in: D. Hejhal, J. Friedman, M. Gutzwiller, A. Odlyzko (Eds.), Emerging Applications of Number Theory, Maths and its Applications, IMA Vol. 109, 1999, pp. 583-590.
[25]
{25} W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cambridge, 1999.

Cited By

View all
  • (2022)High-dimensional expanders from Chevalley groupsProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.18(1-26)Online publication date: 20-Jul-2022
  • (2018)Explicit constructions of Ramanujan complexes of type AEuropean Journal of Combinatorics10.1016/j.ejc.2004.06.00726:6(965-993)Online publication date: 29-Dec-2018
  • (2011)Overlap properties of geometric expandersProceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms10.5555/2133036.2133126(1188-1197)Online publication date: 23-Jan-2011

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete Mathematics
Discrete Mathematics  Volume 269, Issue 1-3
28 July 2003
341 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 28 July 2003

Author Tags

  1. Ramanujan graph
  2. building
  3. cyclic simple algebra
  4. spectrum

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)High-dimensional expanders from Chevalley groupsProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.18(1-26)Online publication date: 20-Jul-2022
  • (2018)Explicit constructions of Ramanujan complexes of type AEuropean Journal of Combinatorics10.1016/j.ejc.2004.06.00726:6(965-993)Online publication date: 29-Dec-2018
  • (2011)Overlap properties of geometric expandersProceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms10.5555/2133036.2133126(1188-1197)Online publication date: 23-Jan-2011

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media