Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Multi-degree B-splines: : Algorithmic computation and properties

Published: 01 January 2020 Publication History

Highlights

We consider spaces of univariate multi-degree polynomial splines.
We derive new properties of a B-spline basis for the multi-degree spline spaces.
We examine an algorithmic approach for computing the multi-degree B-spline basis.
We prove that the algorithm reproduces the multi-degree B-spline basis.
The algorithm enables efficient access to multi-degree splines in practice.

Abstract

This paper addresses theoretical considerations behind the algorithmic computation of polynomial multi-degree spline basis functions as presented in Toshniwal et al. (2017). The approach in Toshniwal et al. (2017) breaks from the reliance on computation of integrals recursively for building B-spline-like basis functions that span a given multi-degree spline space. The gains in efficiency are indisputable; however, the theoretical robustness needs to be examined. In this paper, we show that the construction of Toshniwal et al. (2017) yields linearly independent functions with the minimal support property that span the entire multi-degree spline space and form a convex partition of unity.

References

[1]
C.V. Beccari, G. Casciola, S. Morigi, On multi-degree splines, Comput. Aided Geom. Des. 58 (2017) 8–23.
[2]
L. Beirão da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable T-splines are dual-compatible, Comput. Methods Appl. Mech. Eng. 249–252 (2012) 42–51.
[3]
C. de Boor, A Practical Guide to Splines, revised edition, Springer-Verlag, 2001.
[4]
M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier extraction of NURBS, Int. J. Numer. Methods Eng. 87 (2011) 15–47.
[5]
B. Buchwald, G. Mühlbach, Construction of B-splines for generalized spline spaces generated from local ECT-systems, J. Comput. Appl. Math. 159 (2003) 249–267.
[6]
T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Des. 30 (2013) 331–356.
[7]
C. Giannelli, B. Jüttler, H. Speleers, THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. Des. 29 (2012) 485–498.
[8]
R.R. Hiemstra, T.J.R. Hughes, C. Manni, H. Speleers, D. Toshniwal, A Tchebycheffian Extension of Multi-Degree B-Splines: Algorithmic Computation and Properties, ICES Report 19-08 2019.
[9]
T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195.
[10]
X. Li, Z.J. Huang, Z. Liu, A geometric approach for multi-degree splines, J. Comput. Sci. Technol. 27 (2012) 841–850.
[11]
T. Lyche, C. Manni, H. Speleers, Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement, in: T. Lyche, et al. (Eds.), Splines and PDEs: From Approximation Theory to Numerical Linear Algebra, in: Lecture Notes in Mathematics, vol. 2219, Springer International Publishing AG, 2018, pp. 1–76.
[12]
G. Nürnberger, L.L. Schumaker, M. Sommer, H. Strauss, Generalized Chebyshevian splines, SIAM J. Math. Anal. 15 (1984) 790–804.
[13]
L. Piegl, W. Tiller, The NURBS Book, second edition, Springer-Verlag, 1997.
[14]
D.F. Rogers, An Introduction to NURBS: With Historical Perspective, Morgan Kaufmann, 2001.
[15]
L.L. Schumaker, Spline Functions: Basic Theory, third edition, Cambridge University Press, 2007.
[16]
M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. Numer. Methods Eng. 88 (2011) 126–156.
[17]
T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs, ACM Trans. Graph. 22 (2003) 477–484.
[18]
T.W. Sederberg, J. Zheng, X. Song, Knot intervals and multi-degree splines, Comput. Aided Geom. Des. 20 (2003) 455–468.
[19]
W. Shen, G. Wang, A basis of multi-degree splines, Comput. Aided Geom. Des. 27 (2010) 23–35.
[20]
W. Shen, G. Wang, Changeable degree spline basis functions, J. Comput. Appl. Math. 234 (2010) 2516–2529.
[21]
W. Shen, G. Wang, P. Yin, Explicit representations of changeable degree spline basis functions, J. Comput. Appl. Math. 238 (2013) 39–50.
[22]
H. Speleers, Algorithm 999: computation of multi-degree B-splines, ACM Trans. Math. Softw. 45 (2019) 1–15. Article 43.
[23]
D. Toshniwal, H. Speleers, R.R. Hiemstra, T.J.R. Hughes, Multi-degree smooth polar splines: a framework for geometric modeling and isogeometric analysis, Comput. Methods Appl. Mech. Eng. 316 (2017) 1005–1061.

Cited By

View all

Index Terms

  1. Multi-degree B-splines: Algorithmic computation and properties
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computer Aided Geometric Design
          Computer Aided Geometric Design  Volume 76, Issue C
          Jan 2020
          78 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 January 2020

          Author Tags

          1. Smooth splines
          2. Non-uniform degrees
          3. B-splines
          4. Linear independence
          5. Convex partition of unity
          6. Algorithmic computation

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 06 Oct 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Linear-Time Algorithm for Computing the Bernstein–Bézier Coefficients of B-spline Basis FunctionsComputer-Aided Design10.1016/j.cad.2022.103434154:COnline publication date: 1-Jan-2023
          • (2023)An Efficient Algorithm for Degree Reduction of MD-SplinesAdvances in Computer Graphics10.1007/978-3-031-50078-7_1(3-14)Online publication date: 28-Aug-2023
          • (2022)Algorithm 1020: Computation of Multi-Degree Tchebycheffian B-SplinesACM Transactions on Mathematical Software10.1145/347868648:1(1-31)Online publication date: 16-Feb-2022
          • (2022)A practical method for computing with piecewise Chebyshevian splinesJournal of Computational and Applied Mathematics10.1016/j.cam.2021.114051406:COnline publication date: 1-May-2022
          • (2022)Stable numerical evaluation of multi-degree B-splinesJournal of Computational and Applied Mathematics10.1016/j.cam.2021.113743400:COnline publication date: 15-Jan-2022
          • (2022)Numerical Shape Interrogation of Planar Generalized Cubic CurvesComputer-Aided Design10.1016/j.cad.2022.103234146:COnline publication date: 1-May-2022
          • (2022)Ritz-type projectors with boundary interpolation properties and explicit spline error estimatesNumerische Mathematik10.1007/s00211-022-01286-z151:2(475-494)Online publication date: 1-Jun-2022

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media