Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Unmanned aerial system and machine learning driven Digital-Twin framework for in-season cotton growth forecasting

Published: 11 February 2025 Publication History

Abstract

In the past decade, Unmanned Aerial Systems (UAS) have made a significant impact on various sectors, including precision agriculture, by enabling remote monitoring of crop growth and development. Monitoring and managing crops effectively throughout the growing season are crucial for optimizing crop yield. The integration of UAS-monitored data and machine learning has greatly advanced crop production management, resulting in improvements in key areas such as irrigation scheduling, crop termination analysis, and predicting yield. This study presents the development of a Digital Twin (DT) for cotton crops using UAS captured RGB data. The primary objective of this DT is to forecast various cotton crop features during the growing season, including Canopy Cover (CC), Canopy Height (CH), Canopy Volume (CV), and Excess Greenness (EXG). Predictive analytics as part of DT development employs machine learning regression to extract crop feature growth patterns from UAS data collected from 2020 to 2023. During the current season, real-time UAS data and historical growth patterns are combined to generate growth patterns using a novel hybrid model generation strategy for forecasting. Comparisons of the DT-based forecasts to actual data demonstrated low RMSE for CC, CH, CV, and EXG. The proposed DT framework, which accurately forecasts cotton crop features up to 30 days into the future starting 80 days after sowing, was found to outperform existing forecasting methods. Notably, the RRMSE for CC, CH, CV, and EXG was measured to be 9, 13, 14, and 18 percent, respectively. Furthermore, the potential applications of forecasted data in biomass estimation and yield prediction are highlighted, emphasizing their significance in optimizing agricultural practices.

Highlights

Remote sensing and machine learning enhance crop management and yield prediction.
Machine learning analyzes crop growth patterns from historical UAS data.
Digital Twin forecasts cotton crop features using real-time UAS data.
Forecasted data aids biomass estimation and yield prediction.

References

[1]
Alves R.G., Maia R.F., Lima F., Development of a digital twin for smart farming: Irrigation management system for water saving, J. Clean. Prod. 388 (2023).
[2]
Chen K., Zhao B., Zhou H., Zhou L., Niu K., Jin X., Li R., Yuan Y., Zheng Y., Digital twins in plant factory: A five-dimensional modeling method for plant factory transplanter digital twins, Agriculture 13 (7) (2023) 1336.
[3]
Cho J., Kim C., Lim K.J., Kim J., Ji B., Yeon J., Web-based agricultural infrastructure digital twin system integrated with GIS and BIM concepts, Comput. Electron. Agric. 215 (2023).
[4]
Clementi M., Dessì V., Podestà G.M., Chien S.-C., Wei B.A.T., Lucchi E., Gis-based digital twin model for solar radiation mapping to support sustainable urban agriculture design, Sustainability 16 (15) (2024) 6590.
[5]
Costa L., McBreen J., Ampatzidis Y., Guo J., Gahrooei M.R., Babar M.A., Using UAV-based hyperspectral imaging and functional regression to assist in predicting grain yield and related traits in wheat under heat-related stress environments for the purpose of stable yielding genotypes, Precis. Agric. (2022) 1–21.
[6]
Das S., Christopher J., Apan A., Choudhury M.R., Chapman S., Menzies N.W., Dang Y.P., Evaluation of water status of wheat genotypes to aid prediction of yield on sodic soils using UAV-thermal imaging and machine learning, Agricult. Forest. Meterol. 307 (2021),. URL https://www.sciencedirect.com/science/article/pii/S016819232100160X.
[7]
Falco N., Wainwright H.M., Dafflon B., Ulrich C., Soom F., Peterson J.E., Brown J.B., Schaettle K.B., Williamson M., Cothren J.D., et al., Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery, Sci. Rep. 11 (1) (2021) 7046.
[8]
Fathi M., Shah-Hosseini R., Moghimi A., 3D-ResNet-bilstm model: A deep learning model for county-level soybean yield prediction with time-series sentinel-1, sentinel-2 imagery, and daymet data, Remote Sens. 15 (23) (2023),. URL https://www.mdpi.com/2072-4292/15/23/5551.
[9]
Fei S., Hassan M.A., Xiao Y., Su X., Chen Z., Cheng Q., Duan F., Chen R., Ma Y., UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat, Precis. Agric. 24 (1) (2023) 187–212.
[10]
Feng H., Tao H., Fan Y., Liu Y., Li Z., Yang G., Zhao C., Comparison of winter wheat yield estimation based on near-surface hyperspectral and UAV hyperspectral remote sensing data, Remote Sens. 14 (17) (2022),. URL https://www.mdpi.com/2072-4292/14/17/4158.
[11]
Ferro M.V., Catania P., Miccichè D., Pisciotta A., Vallone M., Orlando S., Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images, Biosyst. Eng. 231 (2023) 36–56,. URL https://www.sciencedirect.com/science/article/pii/S1537511023001149.
[12]
Garcia-Vasquez A.C., Mokari E., Samani Z., Fernald A., Using UAV-thermal imaging to calculate crop water use and irrigation efficiency in a flood-irrigated pecan orchard, Agricult. Water. Manag. 272 (2022),. URL https://www.sciencedirect.com/science/article/pii/S0378377422003717.
[13]
Geipel J., Bakken A.K., Jø rgensen M., Korsaeth A., Forage yield and quality estimation by means of UAV and hyperspectral imaging, Precis. Agric. 22 (2021) 1437–1463.
[14]
Gilliot J.-M., Michelin J., Hadjard D., Houot S., An accurate method for predicting spatial variability of maize yield from UAV-based plant height estimation: A tool for monitoring agronomic field experiments, Precis. Agric. 22 (3) (2021) 897–921.
[15]
Hu X., Liu W., Wen H., Yuen K.-V., Jin T., Junior A.C.N., Zhong P., AF-net: An active fire detection model using improved object-contextual representations on unbalanced UAV datasets, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2024).
[16]
Istiak M.A., Syeed M.M., Hossain M.S., Uddin M.F., Hasan M., Khan R.H., Azad N.S., Adoption of unmanned aerial vehicle (UAV) imagery in agricultural management: A systematic literature review, Ecol. Inform. (2023).
[17]
Ji Y., Chen Z., Cheng Q., Liu R., Li M., Yan X., Li G., Wang D., Fu L., Ma Y., et al., Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.), Plant Methods 18 (1) (2022) 1–13.
[18]
Jung J., Maeda M., Chang A., Bhandari M., Ashapure A., Landivar-Bowles J., The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems, Curr. Opin. Biotechnol. 70 (2021) 15–22,. URL https://www.sciencedirect.com/science/article/pii/S0958166920301257 Food Biotechnology Plant Biotechnology.
[19]
Kim S., Heo S., An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture, Nature Commun. 15 (1) (2024) 1561.
[20]
Lan Y., Xu W., Precision agricultural aviation for agrochemical applications, in: Encyclopedia of Smart Agriculture Technologies, Springer, 2023, pp. 1–11.
[21]
Liu Y., Fan Y., Feng H., Chen R., Bian M., Ma Y., Yue J., Yang G., Estimating potato above-ground biomass based on vegetation indices and texture features constructed from sensitive bands of UAV hyperspectral imagery, Comput. Electron. Agric. 220 (2024),. URL https://www.sciencedirect.com/science/article/pii/S0168169924003090.
[22]
Liu Y., Feng H., Fan Y., Yue J., Chen R., Ma Y., Bian M., Yang G., Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques, Comput. Electron. Agric. 218 (2024),. URL https://www.sciencedirect.com/science/article/pii/S0168169924000905.
[23]
Liu Y., Feng H., Yue J., Fan Y., Bian M., Ma Y., Jin X., Song X., Yang G., Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements, Comput. Electron. Agric. 213 (2023),. URL https://www.sciencedirect.com/science/article/pii/S0168169923006178.
[24]
Liu Y., Feng H., Yue J., Jin X., Fan Y., Chen R., Bian M., Ma Y., Li J., Xu B., Yang G., Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data, Comput. Electron. Agric. 219 (2024),. URL https://www.sciencedirect.com/science/article/pii/S0168169924001996.
[25]
Liu Y., Feng H., Yue J., Li Z., Yang G., Song X., Yang X., Zhao Y., Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images, Comput. Electron. Agric. 198 (2022),. URL https://www.sciencedirect.com/science/article/pii/S0168169922004069.
[26]
Ma J., Liu B., Ji L., Zhu Z., Wu Y., Jiao W., Field-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imagery, Int. J. Appl. Earth Obs. Geoinf. 118 (2023),. URL https://www.sciencedirect.com/science/article/pii/S1569843223001140.
[27]
Mengi E., Becker C.J., Sedky M., Yu S.-Y., Zohdi T.I., A digital-twin and rapid optimization framework for optical design of indoor farming systems, Comput. Mech. 74 (1) (2024) 31–43.
[28]
Mihai S., Yaqoob M., Hung D.V., Davis W., Towakel P., Raza M., Karamanoglu M., Barn B., Shetve D., Prasad R.V., Venkataraman H., Trestian R., Nguyen H.X., Digital twins: A survey on enabling technologies, challenges, trends and future prospects, IEEE Commun. Surv. Tutor. 24 (4) (2022) 2255–2291,.
[29]
Moghadam P., Lowe T., Edwards E.J., Digital twin for the future of orchard production systems, in: Proceedings, Vol. 36, No. 1, MDPI, 2020, p. 92.
[30]
Pal P., Sharma R.P., Tripathi S., Kumar C., Dharavath R., NSGA-III based heterogeneous transmission range selection for node deployment in IEEE 802.15.4 infrastructure for sugarcane and rice crop monitoring in a humid sub-tropical region, IEEE Trans. Wireless Commun. 22 (6) (2023) 3643–3656,.
[31]
Pal P., Sharma R.P., Tripathi S., Kumar C., Ramesh D., Machine learning regression for RF path loss estimation over grass vegetation in IoWSN monitoring infrastructure, IEEE Trans. Ind. Inform. 18 (10) (2022) 6981–6990,.
[32]
Paruelo J.M., Lauenroth W.K., Roset P.A., Estimating aboveground plant biomass using a photographic technique., Rangeland Ecol. Manag. J. Range Manag. Arch. 53 (2) (2000) 190–193.
[33]
Patrignani A., Ochsner T.E., Canopeo: A powerful new tool for measuring fractional green canopy cover, Agron. J. 107 (6) (2015) 2312–2320.
[34]
Peng J., Nieto H., Neumann Andersen M., Kørup K., Larsen R., Morel J., Parsons D., Zhou Z., Manevski K., Accurate estimates of land surface energy fluxes and irrigation requirements from UAV-based thermal and multispectral sensors, ISPRS J. Photogramm. Remote Sens. 198 (2023) 238–254,. URL https://www.sciencedirect.com/science/article/pii/S0924271623000692.
[35]
Phang S.K., Chiang T.H.A., Happonen A., Chang M.M.L., From satellite to UAV-based remote sensing: A review on precision agriculture, IEEE Access 11 (2023) 127057–127076,.
[36]
Pylianidis C., Kallenberg M.G., Athanasiadis I.N., Domain adaptation with transfer learning for pasture digital twins, Environ. Data Sci. 3 (2024).
[37]
Richardson A.D., Jenkins J.P., Braswell B.H., Hollinger D.Y., Ollinger S.V., Smith M.-L., Use of digital webcam images to track spring green-up in a deciduous broadleaf forest, Oecologia 152 (2007) 323–334.
[38]
Risal A., Niu H., Landivar-Scott J.L., Maeda M.M., Bednarz C.W., Landivar-Bowles J., Duffield N., Payton P., Pal P., Lascano R.J., Goebel T., Bhandari M., Improving irrigation management of cotton with small unmanned aerial vehicle (UAV) in texas high plains, Water 16 (9) (2024),. URL https://www.mdpi.com/2073-4441/16/9/1300.
[39]
Shendryk Y., Sofonia J., Garrard R., Rist Y., Skocaj D., Thorburn P., Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging, Int. J. Appl. Earth Obs. Geoinf. 92 (2020),. URL https://www.sciencedirect.com/science/article/pii/S0303243420303457.
[40]
SSURGO Y., Soil Survey Geographic Database, Natural Resources Conservation Service, United States Department of Agriculture, 2023, URL https://websoilsurvey.nrcs.usda.gov/.
[41]
Su X., Wang J., Ding L., Lu J., Zhang J., Yao X., Cheng T., Zhu Y., Cao W., Tian Y., Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice, Field Crops Res. 299 (2023),. URL https://www.sciencedirect.com/science/article/pii/S0378429023001855.
[42]
Su J., Zhu X., Li S., Chen W.-H., AI meets UAVs: A survey on AI empowered UAV perception systems for precis. agric., Neurocomputing 518 (2023) 242–270.
[43]
Tagliavini G., Defraeye T., Carmeliet J., Multiphysics modeling of convective cooling of non-spherical, multi-material fruit to unveil its quality evolution throughout the cold chain, Food Bioprod. Process. 117 (2019) 310–320.
[44]
Tanabe R., Matsui T., Tanaka T.S., Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery, Field Crops Res. 291 (2023),. URL https://www.sciencedirect.com/science/article/pii/S0378429022003574.
[45]
Wan L., Cen H., Zhu J., Zhang J., Zhu Y., Sun D., Du X., Zhai L., Weng H., Li Y., Li X., Bao Y., Shou J., He Y., Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the south of China, Agricult. Forest. Meterol. 291 (2020),. URL https://www.sciencedirect.com/science/article/pii/S0168192320301982.
[46]
Wang F., Yi Q., Hu J., Xie L., Yao X., Xu T., Zheng J., Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield, Int. J. Appl. Earth Obs. Geoinf. 102 (2021),. URL https://www.sciencedirect.com/science/article/pii/S0303243421001045.
[47]
Wen H., Hu X., Zhong P., Detecting rice straw burning based on infrared and visible information fusion with UAV remote sensing, Comput. Electron. Agric. 222 (2024).
[48]
Xu W., Chen P., Zhan Y., Chen S., Zhang L., Lan Y., Cotton yield estimation model based on machine learning using time series UAV remote sensing data, Int. J. Appl. Earth Obs. Geoinf. 104 (2021),. URL https://www.sciencedirect.com/science/article/pii/S030324342100218X.
[49]
Yang S., Hu L., Wu H., Ren H., Qiao H., Li P., Fan W., Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14 (2021) 6253–6269,.
[50]
Yeom J., Jung J., Chang A., Maeda M., Landivar J., Cotton growth modeling using unmanned aerial vehicle vegetation indices, in: 2017 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, IEEE, 2017, pp. 5050–5052.
[51]
Zhao X., Wang W., Wen L., Chen Z., Wu S., Zhou K., Sun M., Xu L., Hu B., Wu C., Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles, Int. J. Agric. Biol. Eng. 16 (4) (2023) 184–189.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computers and Electronics in Agriculture
Computers and Electronics in Agriculture  Volume 228, Issue C
Jan 2025
225 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 11 February 2025

Author Tags

  1. Digital Twin
  2. Remote sensing
  3. Digital agriculture
  4. Forecasting

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media