Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Illumination invariant single face image recognition under heterogeneous lighting condition

Published: 01 June 2017 Publication History

Abstract

Illumination problem is still a bottleneck of robust face recognition system, which demands extracting illumination invariant features. In this field, existing works only consider the variations caused by lighting direction or magnitude (denoted as homogeneous lighting), but the effect of spectral wavelength is always ignored and thus existing illumination invariant descriptors have its limitation on processing face images under different spectral wavelengths (denoted as heterogeneous lighting). We propose a novel gradient based descriptor, namely Logarithm Gradient Histogram (LGH), which takes the illumination direction, magnitude and the spectral wavelength together into consideration, so that it can handle both homogeneous and heterogeneous lightings. Our proposal contributes in three-folds: (1) we incorporate LMSN-LoG filter to eliminate the lighting effect of each image and extract two illumination invariant components, namely logarithm gradient orientation (LGO) and logarithm gradient magnitude (LGM); (2) we propose an effective post-processing strategy to make our model tolerant to noise and generate a histogram representation to integrate both LGO and LGM; (3) we present solid theoretical analysis on the illumination invariant properties of our proposed descriptors. Extensive experimental results on CMU-PIE, Extended YaleB, FRGC and HFB databases are reported to verify the effectiveness of our proposed model. HighlightsTwo illumination invariant components, namely logarithm gradient orientation (LGO) and logarithm gradient magnitude (LGM), are extracted.An effective post-processing strategy is proposed to integrate both LGO and LGM, generating the logarithm gradient histogram (LGH).Solid theoretical analysis on the illumination invariant properties of the proposed descriptors is presented.Competitive results are reported, both in homogeneous and heterogeneous lighting conditions.

References

[1]
P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, W. Worek, Overview of the face recognition grand challenge, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 947954.
[2]
P. Phillips, W. Scruggs, A. O'Toole, P. Flynn, K. Bowyer, C. Schott, M. Sharpe, Frvt 2006 and ice 2006 large-scale experimental results, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 831-846.
[3]
Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000 classes, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 18911898.
[4]
Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: closing the gap to human-level performance in face verification, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 17011708.
[5]
A.K. Jain, B. Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice, in: Handbook of Statistics, vol. 2, 1982, pp. 835855.
[6]
M. Turk, A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci., 3 (1991) 71-86.
[7]
P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997) 711-720.
[8]
X. Tan, S. Chen, Z.-H. Zhou, F. Zhang, Face recognition from a single image per person, Pattern Recognit., 39 (2006) 1725-1745.
[9]
J. Yang, D. Zhang, A.F. Frangi, J.-y. Yang, Two-dimensional pca, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004) 131-137.
[10]
D. Beymer, T. Poggio, Face recognition from one example view, in: Proceedings of the 5th IEEE International Conference on Computer Vision, 1995, pp. 500507.
[11]
A.M. Martnez, Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class, Pattern Anal. Mach. Intell., 24 (2002) 748-763.
[12]
R. Brunelli, T. Poggio, Face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 15 (1993) 1042-1052.
[13]
L. Wiskott, J.-M. Fellous, N. Kuiger, C. Von Der Malsburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997) 775-779.
[14]
T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 2037-2041.
[15]
S. Chen, J. Liu, Z.-H. Zhou, Making flda applicable to face recognition with one sample per person, Pattern Recognit., 37 (2004) 1553-1555.
[16]
X. Xie, J. Lai, W. Zheng, Extraction of illumination invariant facial features from a single image using nonsubsampled contourlet transform, Pattern Recognit., 43 (2010) 4177-4189.
[17]
S. Pizer, E. Amburn, J. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. Zimmerman, K. Zuiderveld, Adaptive histogram equalization and its variations, Comput. Vis. Graph. Image Process., 39 (1987) 355-368.
[18]
S. Shan, W. Gao, B. Cao, D. Zhao, Illumination normalization for robust face recognition against varying lighting conditions, in: Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, 2003, pp. 157164.
[19]
A. Georghiades, P. Belhumeur, D. Kriegman, From few to many, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001) 643-660.
[20]
H. Shim, J. Luo, T. Chen, A subspace model-based approach to face relighting under unknown lighting and poses, IEEE Trans. Image Process, 17 (2008) 1331-1341.
[21]
H. Wang, S. Li, Y. Wang, Generalized quotient image, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, pp. 498505.
[22]
T. Chen, W. Yin, X. Zhou, D. Comaniciu, T. Huang, Total variation models for variable lighting face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 1519-1524.
[23]
X. Tan, B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions, in: Proceedings of the 3rd IEEE International Conference on Analysis and Modeling of Faces and Gestures, 2007, pp. 168182.
[24]
T. Zhang, Y. Tang, B. Fang, Z. Shang, X. Liu, Face recognition under varying illumination using gradientfaces, IEEE Trans. Image Process., 18 (2009) 2599-2606.
[25]
B. Wang, W. Li, W. Yang, Q. Liao, Illumination normalization based on Weber's law with application to face recognition, IEEE Signal Process. Lett. (2011) 462-465.
[26]
M. Sonka, V. Hlavac, R. Boyle, Image Processing: Analysis and Machine Vision, Chapman & Hall, London, 1993.
[27]
R. Basri, D. Jacobs, Lambertian reflectance and linear subspaces, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003) 218-233.
[28]
V. Blanz, T. Vetter, Face recognition based on fitting a 3d morphable model, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003) 1063-1074.
[29]
W.Y. Zhao, R. Chellappa, Symmetric shape-from-shading using self-ratio image, Int. J. Comput. Vis., 45 (2001) 55-75.
[30]
W. Zhang, S. Shan, W. Gao, X. Chen, H. Zhang, Local Gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition, in: Proceedings of the 10th IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 786791.
[31]
B. Zhang, S. Shan, X. Chen, W. Gao, Histogram of Gabor phase patterns (hgpp), IEEE Trans. Image Process., 16 (2007) 57-68.
[32]
Z. Lei, S. Liao, M. Pietikinen, S.Z. Li, Face recognition by exploring information jointly in space, scale and orientation, IEEE Trans. Image Process., 20 (2011) 247-256.
[33]
S. Liao, D. Yi, Z. Lei, R. Qin, S.Z. Li, Heterogeneous face recognition from local structures of normalized appearance, in: Proceedings of the IAPR/IEEE International Conference on Biometrics, 2009, pp. 209218.
[34]
B. Klare, A. Jain, Heterogeneous face recognition: matching nir to visible light images, in: Proceedings of the IEEE International Conference on Pattern Recognition, 2010, pp. 15131516.
[35]
D. Jobson, Z. Rahman, G. Woodell, A multiscale retinex for bridging the gap between color images and the human observation of scenes, IEEE Trans. Image Process., 6 (1997) 965-976.
[36]
R. Gross, V. Brajovic, An image preprocessing algorithm for illumination invariant face recognition, in: Proceedings of the 4th IEEE International Conference on Audio- and Video-Based Biometrie Person Authentication, 2003, pp. 1018.
[37]
Z. Hou, W. Yau, Relative gradients for image lighting correction, in: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 13741377.
[38]
A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.
[39]
Z. Cao, Q. Yin, X. Tang, J. Sun, Face recognition with learning-based descriptor, in: Proceedings IEEE International Conference on Computer Vision and Pattern Recognition, 2010, pp. 27072714.
[40]
Z. Lei, M. Pietikinen, S.Z. Li, Learning discriminant face descriptor, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014) 289-302.
[41]
O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in: British Machine Vision Conference, 2015.
[42]
L. Wolf, T. Hassner, Y. Taigman, The one-shot similarity kernel, in: IEEE International Conference on Computer Vision, 2009, pp. 897902.
[43]
J. Lu, V.E. Liong, X. Zhou, J. Zhou, Learning compact binary face descriptor for face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015) 2056-2410.
[44]
K. Mikolajczyk, C. Schmid, Scale & affine invariant interest point detectors, Int. J. Comput. Vis., 60 (2004) 63-86.
[45]
S. Liu, D. Yi, Z. Lei, S. Li, Heterogeneous face image matching using multi-scale features, in: International Conference on Biometrics, 2012, pp. 7984.
[46]
J.-Y. Zhu, W.-S. Zheng, J.-H. Lai, Matching nir face to vis face using transduction, IEEE Trans. Inf. Forensics Secur., 9 (2014) 501-514.
[47]
B.F. Klare, A.K. Jain, Heterogeneous face recognition using kernel prototype similarities, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1410-1422.
[48]
H. Bischof, H. Wildenauer, A. Leonardis, Illumination insensitive recognition using eigenspaces, Comput. Vis. Image Underst., 95 (2004) 86-104.
[49]
L. Zhang, D. Samaras, Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 351-363.
[50]
J. Lu, Y.-P. Tan, G. Wang, Discriminative multimanifold analysis for face recognition from a single training sample per person, IEEE Trans. Biom. Compend., 35 (2012) 39-51.
[51]
J.Y. Zhu, W.S. Zheng, J.H. Lai, Logarithm gradient histogram: a general illumination invariant descriptor for face recognition, in: IEEE International Conference on Automatic Face and Gesture Recognition, 2013, pp. 18.
[52]
T. Lindeberg, Edge detection and ridge detection with automatic scale selection, Int. J. Comput. Vis., 30 (1998) 117-156.
[53]
R.A. Young, The Gaussian derivative model for spatial vision, Spat. Vis., 2 (1987) 273-293.
[54]
I. Meglinski, S. Matcher, Quantitative Assessment of Skin Layers Absorption and Skin Reflectance Spectra Simulation in the Visible and Near-infrared Spectral Regions, vol. 23, Iop Publishing, 2002.
[55]
T. Sim, S. Baker, M. Bsat, The cmu pose, illumination, and expression (pie) database, in: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, 2002, pp. 46 51.
[56]
S. Li, Z. Lei, M. Ao, The hfb face database for heterogeneous face biometrics research, in: Proceedings IEEE Computer Society Workshop on Computer Vision and Pattern Recognition, 2009, pp. 18.
[57]
X. Xie, W.-S. Zheng, J. Lai, P.C. Yuen, C.Y. Suen, Normalization of face illumination based on large-and small-scale features, IEEE Trans. Image Process., 20 (2011) 1807-1821.
[58]
R. Gross, I. Matthews, J.F. Cohn, T. Kanade, S. Baker, Multi-pie, Image Vis. Comput., 28 (2010) 807-813.
[59]
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886893.

Cited By

View all
  • (2024)Overview of indoor scene recognition and representation methods based on multimodal knowledge graphsApplied Intelligence10.1007/s10489-023-05235-754:1(899-923)Online publication date: 1-Jan-2024
  • (2023)Facial feature embedded CycleGAN for VIS–NIR translationMultidimensional Systems and Signal Processing10.1007/s11045-023-00871-134:2(423-446)Online publication date: 1-Jun-2023
  • (2022)A Robust Face Recognition Method Combining LBP with Multi-mirror Symmetry for Images with Various Face InterferencesInternational Journal of Automation and Computing10.1007/s11633-018-1153-816:5(671-682)Online publication date: 8-Jan-2022
  • Show More Cited By
  1. Illumination invariant single face image recognition under heterogeneous lighting condition

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Pattern Recognition
      Pattern Recognition  Volume 66, Issue C
      June 2017
      422 pages

      Publisher

      Elsevier Science Inc.

      United States

      Publication History

      Published: 01 June 2017

      Author Tags

      1. Face recognition
      2. Gradient histogram
      3. Heterogeneous lighting
      4. Illumination invariant feature

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 04 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Overview of indoor scene recognition and representation methods based on multimodal knowledge graphsApplied Intelligence10.1007/s10489-023-05235-754:1(899-923)Online publication date: 1-Jan-2024
      • (2023)Facial feature embedded CycleGAN for VIS–NIR translationMultidimensional Systems and Signal Processing10.1007/s11045-023-00871-134:2(423-446)Online publication date: 1-Jun-2023
      • (2022)A Robust Face Recognition Method Combining LBP with Multi-mirror Symmetry for Images with Various Face InterferencesInternational Journal of Automation and Computing10.1007/s11633-018-1153-816:5(671-682)Online publication date: 8-Jan-2022
      • (2019)Illumination Classification based on No-Reference Image Quality Assessment (NR-IQA)Proceedings of the 2019 Asia Pacific Information Technology Conference10.1145/3314527.3314529(70-74)Online publication date: 25-Jan-2019
      • (2019)General logarithm difference model for severe illumination variation face recognitionMultimedia Tools and Applications10.1007/s11042-019-07830-878:19(27425-27447)Online publication date: 1-Oct-2019

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media