Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Spectral attribute learning for visual regression

Published: 01 June 2017 Publication History

Abstract

A number of computer vision problems such as facial age estimation, crowd counting and pose estimation can be solved by learning regression mapping on low-level imagery features. We show that visual regression can be substantially improved by two-stage regression where imagery features are first mapped to an attribute space which explicitly models latent correlations across continuously-changing output. We propose an approach to automatically discover spectral attributes which avoids manual work required for defining hand-crafted attribute representations. Visual attribute regression outperforms direct visual regression and our spectral attribute visual regression achieves state-of-the-art accuracy in multiple applications. HighlightsSpectral attributes avoid manually-engineered attribute construction.Spectral attributes handle multiple correlated regression outputs.Spectral attributes achieve state-of-the-art performance on various benchmarks.

References

[1]
X. Geng, Z.-H. Zhou, K. Smith-Miles, Automatic age estimation based on facial aging patterns, IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007) 2234-2240.
[2]
Y. Fu, G. Guo, T.S. Huang, Age synthesis and estimation via faces: a survey, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 1955-1976.
[3]
Y. Zhang, D. Yeung, Multi-tasks warped Gaussian process for personalized age estimation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[4]
K. Chen, S. Gong, T. Xiang, C.C. Loy, Cumulative attribute space for age and crowd density estimation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013.
[5]
A.B. Chan, N. Vasconcelos, Counting people with low-level features and Bayesian regression, IEEE Trans. Image Process., 21 (2012) 2160-2177.
[6]
G. Guo, Y. Fu, C. Dyer, T. Huang, Head pose estimation: Classification or regression?, in: Proceedings of International Conference on Pattern Recognition, 2008.
[7]
S. Yan, X. Zhou, M. Liu, M. Hasegawa-Johnson, T. Huang, Regression from patch-kernel, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008.
[8]
E. Murphy-Chutorian, M.M. Trivedi, Head pose estimation in computer vision: a survey, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 607-626.
[9]
G. Mu, G. Guo, Y. Fu, T.S. Huang, Human age estimation using bio-inspired features, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 112119.
[10]
S. An, W. Liu, S. Venkatesh, Face recognition using kernel ridge regression, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[11]
V. Ferrari, A. Zisserman, Learning visual attributes, in: Proceedings of Advances in Neural Information Processing Systems, 2007.
[12]
C.H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object classes by between-class attribute transfer, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009.
[13]
Y. Fu, T.M. Hospedales, T. Xiang, S. Gong, Attribute learning for understanding unstructured social activity, in: Proceedings of European Conference on Computer Vision, 2012.
[14]
K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Manning, C. Christopher, Spectral learning, in: Proceedings of International Joint Conference of Artificial Intelligence, 2003.
[15]
K.-Y. Chang, C.-S. Chen, Y.-P. Hung, Ordinal hyperplanes ranker with cost sensitivities for age estimation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2011.
[16]
X. Geng, C. Yin, Z.-H. Zhou, Facial age estimation by learning from label distributions, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 2401-2412.
[17]
D. Parikh, K. Grauman, Relative attributes, in: Proceedings of International Conference on Computer Vision, 2011.
[18]
G. Patterson, J. Hays, SUN attribute database: Discovering, annotating, and recognizing scene attributes, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012.
[19]
T.L. Berg, A.C. Berg, J. Shih, Automatic attribute discovery and characterization from noisy web data, in: Proceedings of European Conference on Computer Vision, 2010.
[20]
T. Joachims, Optimizing search engines using clickthrough data, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.
[21]
I. Endres, D. Hoiem, Category independent object proposals, in: Proceedings of European Conference on Computer Vision, 2010.
[22]
M. Kim, V. Pavlovic, Structured output ordinal regression for dynamic facial emotion intensity prediction, in: Proceedings of European Conference on Computer Vision, 2010.
[23]
W. Chen, C. Xiong, R. Xu, J.J. Corso, Actionness ranking with lattice conditional ordinal random fields, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[24]
T. Malisiewicz, A. Gupta, A. Efros, Ensemble of exemplar-SVMs for object detection and beyond, in: Proceedings of International Conference on Computer Vision, 2011.
[25]
A.C. Berg, T.L. Berg, J. Malik, Shape matching and object recognition using low distortion correspondences, in: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
[26]
S. Bagon, O. Brostovski, M. Galun, M. Irani, Detecting and sketching the common, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[27]
M. Torki, A. Elgammal, One-shot multi-set non-rigid feature-spatial matching, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[28]
A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Proceedings of Advances in neural information processing systems, 2002.
[29]
S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2006.
[30]
L. Zelnik-manor, P. Perona, Self-tuning spectral clustering, in: Proceedings of Advances in Neural Information Processing Systems, 2005.
[31]
D. Tao, L. Jin, Y. Wang, Y. Yuan, X. Li, Person re-identification by regularized smoothing kiss metric learning, IEEE Trans. Circuits Syst. Video Technol., 23 (2013) 1675-1685.
[32]
D. Tao, Y. Guo, M. Song, Y. Li, Z. Yu, Y.Y. Tang, Person re-identification by dual-regularized kiss metric learning, IEEE Trans. Image Process., 25 (2016) 2726-2738.
[33]
D. Tao, L. Jin, W. Liu, X. Li, Hessian regularized support vector machines for mobile image annotation on the cloud, IEEE Trans. Multimed., 15 (2013) 833-844.
[34]
L. Yang, S. Yang, S. Li, R. Zhang, F. Liu, L. Jiao, Coupled compressed sensing inspired sparse spatial-spectral lssvm for hyperspectral image classification, Knowl.-Based Syst., 79 (2015) 80-89.
[35]
R. Shang, Z. Zhang, L. Jiao, C. Liu, Y. Li, Self-representation based dual-graph regularized feature selection clustering, Neurocomputing, 171 (2016) 1242-1253.
[36]
R. Shang, Z. Zhang, L. Jiao, W. Wang, S. Yang, Global discriminative-based nonnegative spectral clustering, Pattern Recognit., 55 (2016) 172-182.
[37]
L. Jiao, F. Shang, F. Wang, Y. Liu, Fast semi-supervised clustering with enhanced spectral embedding, Pattern Recognit., 45 (2012) 4358-4369.
[38]
T. Jaakkola, D. Haussler, Exploiting generative models in discriminative classifiers, in: Proceedings of Advances in neural information processing systems, 1998.
[39]
J. Sanchez, F. Perronnin, T. Mensink, J. Verbeek, Image classification with the Fisher vector: theory and practice, Int. J. Comput. Vis., 105 (2013) 222-245.
[40]
K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman, The devil is in the details: an evaluation of recent feature encoding methods, in: Proceedings of British Machine Vision Conference, 2011.
[41]
K. Chen, L. Zhang, Y. Zhang, Cyclic motion generation of multi-link planar robot performing square end-effector trajectory analyzed via gradient-descent and zhang et als neural-dynamic methods, in: ISSCAA, 2008.
[42]
A. Argyriou, T. Evgeniou, M. Pontil, Multi-task feature learning, in: NIPS, 2006.
[43]
A. Argyriou, T. Evgeniou, M. Pontil, A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learning, Mach. Learn., 73 (2008) 243-272.
[44]
Z. Kang, K. Grauman, F. Sha, Learning with whom to share in multi-task feature learning, in: Proceedings of International Conference on Machine Learning, 2011.
[45]
M. Solnon, S. Arlot, F. Bach, Multi-task regression using minimal penalties, JMLR.
[46]
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn.
[47]
H. Borchani, G. Varando, C. Bielza, P. Larraaga, A survey on multi-output regression, Wiley Interdisciplinary Reviews, Data Min. Knowl. Discov., 5 (2015) 216-233.
[48]
A.J. Smola, B. Schlkopf, A tutorial on support vector regression, Stat. Comput., 14 (2004) 199-222.
[49]
T. Joachims, T. Finley, C.-N.J. Yu, Cutting-plane training of structural svms, Mach. Learn., 77 (2009) 27-59.
[50]
A.B. Chan, Z.-S. J. Liang, N. Vasconcelos, Privacy preserving crowd monitoring: counting people without people models or tracking, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008.
[51]
K. Chen, C.C. Loy, S. Gong, T. Xiang, Feature mining for localised crowd counting, in: Proceedings of British Machine Vision Conference, 2012.
[52]
N. Gourier, D. Hall, J.L. Crowley, Estimating face orientation from robust detection of salient facial structures, in: Proceedings of International Conference on Pattern Recognition, 2004.
[53]
C.C. Loy, S. Gong, T. Xiang, From semi-supervised to transfer counting of crowds, in: Proceedings of International Conference on Computer Vision, 2013.
[54]
T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001) 681-685.
[55]
S. Yan, H. Wang, X. Tang, T.S. Huang, Learning auto-structured regressor from uncertain nonnegative labels, in: Proceedings of International Conference on Computer Vision, 2007.
[56]
G. Guo, Y. Fu, C.R. Dyer, T.S. Huang, Image-based human age estimation by manifold learning and locally adjusted robust regression, IEEE Trans. Image Process., 17 (2008) 1178-1188.
[57]
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of IEEE Computer Vision and Pattern Recognition, 2005.
[58]
X. Geng, Y. Xia, Head pose estimation based on multivariate label distribution, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[59]
K. Hara, R. Chellappa, Growing regression forests by classification: Applications to object pose estimation, in: Proceedings of European Conference on Computer Vision, 2014.
[60]
S. Yan, H. Wang, T.S. Huang, Q. Yang, X. Tang, Ranking with uncertain labels, in: Proceedings of IEEE International Conference on Multimedia and Expo, 2007.
[61]
K.-Y. Chang, C.-S. Chen, Y.-P. Hung, A ranking approach for human ages estimation based on face images, in: Proceedings of International Conference on Pattern Recognition, 2010.
[62]
K. Chen, J.-K. Kmrinen, Learning to count with back-propagated information, in: Proceedings of International Conference on Pattern Recognition, 2014.
[63]
M.A. Haj, J. Gonzalez, L.S. Davis, On partial least squares in head pose estimation: How to simultaneously deal with misalignment, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012.
[64]
K. Simonyan, A. Vedaldi, A. Zisserman, Deep Fisher networks for large-scale image classification, in: Proceedings of Advances in Neural Information Processing systems, 2013.

Cited By

View all
  • (2018)Deep Learned Cumulative Attribute Regression2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)10.1109/FG.2018.00113(715-722)Online publication date: 15-May-2018
  1. Spectral attribute learning for visual regression

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Pattern Recognition
    Pattern Recognition  Volume 66, Issue C
    June 2017
    422 pages

    Publisher

    Elsevier Science Inc.

    United States

    Publication History

    Published: 01 June 2017

    Author Tags

    1. Attributes
    2. Crowd counting
    3. Facial age estimation
    4. Head pose estimation
    5. Regression
    6. Spectral learning

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Deep Learned Cumulative Attribute Regression2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)10.1109/FG.2018.00113(715-722)Online publication date: 15-May-2018

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media