Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A new method of localizing brain activity using the scalp EEG data

Published: 01 January 2022 Publication History

Abstract

We propose a spatial localization method for scalp electroencephalography (EEG). The technique allows reliable and unambiguous identification of the activity for any intracerebral source by its spatial coordinates. Our "virtually implanted electrode" is based on the dynamics and correlation analysis of signals in the EEG leads with the addition of artificially generated data. The generated data helps us accurately model the electrical potential distribution between the studied source and the scalp electrodes. Each modeled intracerebral source is analyzed independently, so the proposed method does not require an estimate of the possible number of sources. The method produces output values that can be interpreted as the "local field" elec-trical activity for the implanted electrode in the corresponding brain point. The signal cleaning procedure makes it possible to exclude the influence from neighboring regions and detect a given brain region's isolated electrical activity. For verification, the method was applied in the empathy study on a sample of 16 people. We compared the background EEG of calm wakefulness with the EEG of empathic behavior for the 33 preselected brain regions.

References

[1]
M. Dümpelmann, J. Fell, J. Wellmer, H. Urbach, C.E. Elger, 3D source localization derived from subdural strip and grid electrodes: A simulation study, Clinical Neurophysiology 120 (6) (2009) 1061–1069,.
[2]
Fischler, I (1985). Brain potentials during sentence verification: Automatic aspects of comprehension., 21(2), 83–105.
[3]
Gutierrez, D.; Nehorai, A.; Dogandzic, A. (2006). Performance analysis of reduced-rank beamformers for estimating dipole source signals using EEG/MEG., 53(5), 840–844.
[4]
K.A. Hadland, M.F. Rushworth, et al., The effect of cingulate lesions on social behaviour and emotion, // Neuropsychologia 41 (8) (2003) 919—931,. P—.
[5]
D. Hassabis, D. Kumaran, E.A. Maguire, Using Imagination to Understand the Neural Basis of Episodic Memory, Journal of Neuroscience 27 (52) (2007) 14365–14374,.
[6]
Henry C.E. (1976). EEG interpretation. Problems of overreading and underreading: E.S. Goldensohn and R. Koehle. (Futura, Mt. Kisco, N.Y., 1975, 186 p.), 41(6), 0–676.
[7]
Jack R Smith; Ismet Karacan (1971). EEG sleep stage scoring by an automatic hybrid system., 31(3), 0–237.
[8]
S. Kozlovskiy, A. Vartanov, M. Pyasik, E. Nikonova, B. Velichkovsky, Anatomical Characteristics of Cingulate Cortex and Neuropsychological Memory Tests Performance, // Procedia - Social and Behavioral Sciences 86 (2013) 128—133,. P.—.
[9]
S.A. Kozlovskiy, A.V. Vartanov, E.Y. Nikonova, M.M. Pyasik, B.M. Velichkovsky, The Cingulate Cortex and Human Memory Processes, // Psychology in Russia: State of the Art 5 (2012) 231—243,. P.—.
[10]
J.D. Kropotov, Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment, Elsevier/Academic Press, London, 2016, 1st.
[11]
F. La Foresta, N. Mammone, F.C. Morabito, PCA–ICA for automatic identification of critical events in continuous coma-EEG monitoring, Biomedical Signal Processing and Control 4 (3) (2009) 229–235,.
[12]
J.P. Lachaux, N. Axmacher, F. Mormann, E. Halgren, N.E. Crone, High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research, Prog. Neurobiol. 98 (3) (2012) 279–301.
[13]
Luck, S.J., Woodman, G.F., Vogel, E.K., 2000. Event-related potential studies of attention.
[14]
Masherov E.JI. Proishozhdenie nizkochastotnoj komponenty biopotencialov mozga //V kn. Ivanov L.B. Prikladnaja komp'juternaja jelektrojencefalografija. M.; AOZT «Antidor».- 2000, 232-24.
[15]
Masherov E.L. Modelirovanie nizkochastotnoj sostavljajushhej spektra JeJeG s pozicij teorii avtomaticheskogo upravlenija. Jelektronnyj resurs: http://www.ihna.ru/news/?ELEMENT_ID=6293.
[16]
Masherov E.L., Volynskij P.E. Novye metody matematicheskogo analiza v nejrofiziologii - odno iz prioritetnyh napravlenij nauchnoj rabotyG.A.Shhekut'eva.
[17]
Masherov E.L., Volynskij P.E. Novye metody matematicheskogo analiza v nejrofiziologii – odno iz prioritetnyh napravlenij nauchnoj raboty G.A.Shhekut'eva //Materialy konferencii «Nejrofiziologicheskie issledovanija v klinike» 11 –12 aprelja 2013 goda. M.: FGBU «Nauchno-issledovatel'skij institut nejrohirurgii imeni akademika N.N.Burdenko» RAMN, s. 7-8.
[18]
L. Michels, K. Bucher, R. Lüchinger, P. Klaver, E. Martin, D. Jeanmonod, D. Brandeis, Simultaneous EEG-fMRI during a Working Memory Task: Modulations in Low and High Frequency Bands, PLoS ONE 5 (4) (2010) e10298,.
[19]
M. Vila-Vidal, C. Enríquez, A. Principe, R. Rocamora, G. Deco, A. Campo, Low entropy map of brain oscillatory activity identifies spatially localized events: A new method for automated epilepsy focus prediction, NeuroImage 208 (2020),.
[20]
Vila-Vidal, M., Principe, A., Ley, M., Deco, G., Tauste Campo, A., Rocamora, R. (2017).
[21]
Yu Tianwei. (2017). DCA: Dynamic Correlation Analysis. https://arxiv.org/pdf/1705.02479.pdf.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Procedia Computer Science
Procedia Computer Science  Volume 213, Issue C
2022
846 pages
ISSN:1877-0509
EISSN:1877-0509
Issue’s Table of Contents

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 January 2022

Author Tags

  1. EEG
  2. Noninvasive Method
  3. Brain Activity
  4. Implanted electrode

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media