Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

An irregular filter model

Published: 20 May 2008 Publication History

Abstract

In this paper we introduce a new filter model, which is of a kind that has escaped investigation up to now: it is induced by an intersection type theory generated in a non-standard way, by a preorder which puts into relation an atom with an arrow type, without equating them. We study the domain-theoretic implications of this choice, that are not trivial: in order to describe this filter model a new category is introduced and a special purpose functor defined. The filter model is then characterized as the initial algebra of the functor.

References

[1]
Abramsky, S., Domain theory in logical form. Ann. Pure Appl. Logic. v51 i1. 1-77.
[2]
Abramsky, S., A domain equation for bisimulation. Inform. and Comput. v92 i2. 161-218.
[3]
Abramsky, S. and Ong, L.C., Full abstraction in the lazy lambda calculus. Inform. and Comput. v105. 159-267.
[4]
Adamek, J., Herrlich, H. and Strecker, G.E., Abstract and concrete categories: The joy of cats. In: Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts,
[5]
F. Alessi, Strutture di tipi, teoria dei domini, e modelli del ¿-calcolo, Ph.D. Thesis, University of Turin, 1991
[6]
Alessi, F., Type preorders. In: LNCS, vol. 787. Springer Verlag. pp. 37-51.
[7]
Alessi, F., Dezani-Ciancaglini, M. and Honsell, F., Filter models and easy terms. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (Eds.), LNCS, vol. 2202. Springer-Verlag. pp. 17-37.
[8]
Alessi, F., Dezani-Ciancaglini, M. and Lusin, S., Intersection types and domain operators. Theoret. Comput. Sci. v316 i1-3. 25-47.
[9]
A. Asperti, Categorical topics in computer science, Ph.D. Thesis, University of Pisa, 1990
[10]
van Bakel, S., Cut-elimination in the strict intersection type assignment system is strongly normalising. Notre Dame J. of Formal Logic. v45 i1.
[11]
Barendregt, H.P., The Lambda Calculus: Its Syntax and Semantics. 1984. North-Holland Publishing co., Amsterdam.
[12]
Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M., A filter lambda model and the completeness of type assignment. J. Symbolic Logic. v48 i4. 931-940.
[13]
Berline, C., From computation to foundations via functions and application: The ¿-calculus and its webbed models. Theoret. Comput. Sci. v249. 81-161.
[14]
Coppo, M. and Dezani-Ciancaglini, M., An extension of the basic functionality theory for the ¿-calculus. Notre Dame J. Formal Logic. v21 i4. 685-693.
[15]
Coppo, M., Dezani-Ciancaglini, M. and Venneri, B., Principal type schemes and ¿-calculus semantics. In: Curry, H.B. (Ed.), Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London. pp. 535-560.
[16]
Coppo, M., Dezani-Ciancaglini, M., Honsell, F. and Longo, G., Extended type structures and filter lambda models. In: Logic Colloquium ¿82, North-Holland. pp. 241-262.
[17]
Coppo, M., Dezani-Ciancaglini, M. and Zacchi, M., Type theories, normal forms and D¿ lambda models. Inform. and Comput. v72 i2. 85-116.
[18]
Dezani-Ciancaglini, M., Ghilezan, S. and Likavec, S., Behavioural inverse limit models. Theoret. Comput. Sci. v316 i1-3. 49-74.
[19]
Dezani-Ciancaglini, M., Honsell, F. and Alessi, F., A complete characterization of complete intersection-type preorders. ACM TOCL. v4 i1. 120-146.
[20]
Dezani-Ciancaglini, M., Honsell, F. and Motohama, Y., Compositional characterization of ¿-terms using intersection types. Theoret. Comput. Sci. v304 i3. 459-495.
[21]
Egidi, L., Honsell, F. and Ronchi della Rocca, S., Operational, denotational and logical descriptions: A case study. Fund. Inform. v16. 149-169.
[22]
Engeler, E., Algebras and combinators. Algebra Universalis. v13 i3. 389-392.
[23]
Gierz, Gerhard.K., Heinrich Hofmann, Karl, Keimel, Klaus, Jimmie, Lawson, Michael, D., Mislove, W. and Scott, Dana.S., Continuous Lattices and Domains. 2003. Cambridge University Press.
[24]
Hindley, R. and Longo, G., Lambda calculus models and extensionality. Z. Math. Logik Grundlag. Math. v26 i4. 289-310.
[25]
Honsell, F. and Lenisa, M., Semantical analysis of perpetual strategies in --calculus. Theoret. Comput. Sci. v212 i1-2. 183-209.
[26]
Honsell, F. and Ronchi Della Rocca, S., An approximation theorem for topological lambda models and the topological incompleteness of lambda calculus. J. Comput. System Sci. v45 i1. 49-75.
[27]
Mac Lane, S., Categories for the Working Mathematician. 1971. Springer.
[28]
D. Park, The Y-combinator in Scott's ¿-calculus models, Theory of Computation Report 13, Department of Computer Science, University of Warick, 1976 (revised version)
[29]
G. Plotkin, Pisa notes (on domain theory), University of Edinburgh, 1983. Available at: homepages.inf.ed.ac.uk/gdp/publications/Domains.ps
[30]
Ronchi della Rocca, S. and Paolini, L., The parametric lambda calculus. A metamodel for computation. In: An EACTS Series, Springer-Verlag.
[31]
Scott, D., Data types as lattices. SIAM J. Comput. v5 i3. 522-587.
[32]
Scott, D.S., Continuous lattices. In: LNM, vol. 274. Springer-Verlag. pp. 97-136.
[33]
Scott, D.S., Domains for denotational semantics. In: Automata, Languages and Programming (Aarhus, 1982), Springer-Verlag. pp. 577-613.
[34]
Smyth, Michael B. and Plotkin, Gordon D., The category-theoretic solution of recursive domain equations. SIAM J. Comput. v11 i4. 761-783.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 398, Issue 1-3
May, 2008
265 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 20 May 2008

Author Tags

  1. Intersection types
  2. Lambda calculus semantics
  3. Lattices

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media