Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Spatially‐coupled communication system for the correlated erasure channel

Published: 01 May 2013 Publication History
  • Get Citation Alerts
  • Abstract

    Low implementation complexity, low delay and close‐to‐optimal performance over a wide variety of channels are some of the advantages of spatially‐coupled low‐density parity‐check (LDPC) codes. However, the error performance of the sliding window decoding scheme that is used to decode these codes is considerably degraded over channels with memory, such as the correlated erasure channel. Employing a block interleaver to encounter this situation is not always a viable option, since it introduces a large amount of delay and cancels out the low‐delay property of the sliding window decoder. Another way to reduce the effects of erasure bursts is to construct a more robust code ensemble by presenting additional code design rules. However, this approach results in additional constraints on the already complicated code construction process. The authors propose a novel communication system that combats the effects of the erasure bursts through the use of a convolutional interleaver. The proposed system combines the inherent convolutional nature of the spatially‐coupled LDPC codes with that of a convolutional interleaver to achieve very low overall delay. The performance of the proposed approach is analysed using the density evolution technique and the performance improvement is demonstrated as a function of the interleaving delay via computer simulations.

    References

    [1]
    Gallager R.: ‘Low‐density parity‐check codes’, IRE Trans. Inf. Theory, 1962, IT‐8, pp. 21–28 (https://doi.org/10.1109/TIT.1962.1057683)
    [2]
    MacKay D.J.C., and Neal R.M.: ‘Near Shannon limit performance of low density parity check codes’, Electron. Lett., 1996, 32, (18), pp. 1645–1646 (https://doi.org/10.1049/el:19961141)
    [3]
    Chung S.Y., Forney Jr., G.D., Richardson T.J., and Urbanke R.L.: ‘On the design of low‐density parity‐check codes within 0.0045 dB of the Shannon limit’, IEEE Commun. Lett., 2001, 5, pp. 58–60 (https://doi.org/10.1109/4234.905935)
    [4]
    Pusane A.E., Smarandache R., Vontobel P.O., and Costello D.J. Jr.: ‘Deriving good LDPC convolutional codes from LDPC block codes’, IEEE Trans. Inf. Theory, 2011, IT‐57, (2), pp. 835–857 (https://doi.org/10.1109/TIT.2010.2095211)
    [5]
    Jiménez‐Feltström A., and Zigangirov K.Sh.: ‘Time‐varying periodic convolutional codes with low‐density parity‐check matrix’, IEEE Trans. Inf. Theory, 1999, IT‐45, pp. 2181–2191 (https://doi.org/10.1109/18.782171)
    [6]
    Lentmaier M., Sridharan A., Costello Jr., D.J., and Zigangirov K.Sh.: ‘Iterative decoding threshold analysis for LDPC convolutional codes’, IEEE Trans. Inf. Theory, 2010, IT‐56, (10), pp. 5274–5289 (https://doi.org/10.1109/TIT.2010.2059490)
    [7]
    Kudekar S., Richardson T.J., and Urbanke R.L.: ‘Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC’, IEEE Trans. Inf. Theory, 2011, 57, (2), pp. 803–834 (https://doi.org/10.1109/TIT.2010.2095072)
    [8]
    Iyengar A.R., Siegel P.H., Urbanke R.L., and Wolf J.K.: ‘Windowed decoding of spatially coupled codes’. Proc. IEEE Int. Symp. Inform. Theory, August 2011, pp. 2552–2556
    [9]
    Chen Z., Bates S., and Dong X.: ‘Low‐density parity‐check convolutional codes applied to packet based communication systems’. Proc. IEEE Global Telecommun. Conf., St. Louis, MO, USA, 2005, vol. 3
    [10]
    Costello Jr., D.J., Pusane A.E., Bates S., and Zigangirov K.Sh.: ‘A comparison between LDPC block and convolutional codes’. Proc. Information Theory and Applications Workshop, San Diego, CA, USA, February 2006
    [11]
    Iyengar A.R., Papaleo M., Siegel P.H., Wolf J.K., Vanelli‐Coralli A., and Corazza G.E.: ‘Windowed decoding of protograph‐based LDPC convolutional codes over erasure channels’, IEEE Trans. Inf. Theory, 2012, 58, (4), pp. 2303–2320 (https://doi.org/10.1109/TIT.2011.2177439)
    [12]
    Iyengar A.R., Papaleo M., Liva G., Siegel P.H., Wolf J.K., and Corazza G.E.: ‘Protograph‐based LDPC convolutional codes for correlated erasure channels’. Proc. IEEE Int. Conf. Communication, Cape Town, South Africa, May 2010, pp. 1–6
    [13]
    Tanner R.M.: ‘A recursive approach to low complexity codes’, IEEE Trans. Inf. Theory, 1981, IT‐27, pp. 533–547 (https://doi.org/10.1109/TIT.1981.1056404)
    [14]
    Johannesson R., and Zigangirov K.Sh.: ‘Fundamentals of convolutional coding’ (IEEE Press, Piscataway, NJ, 1999)
    [15]
    Pusane A.E., Jiménez‐Feltström A., Sridharan A., Lentmaier M., Zigangirov K.Sh., and Costello Jr., D.J.: ‘Implementation aspects of LDPC convolutional codes’, IEEE Trans. Commun., 2008, 56, (7), pp. 1060–1069 (https://doi.org/10.1109/TCOMM.2008.050519)
    [16]
    Thorpe J.: ‘Low‐density parity‐check (LDPC) codes constructed from protographs’. JPL INP Progress report, August 2003, vol. 42–154
    [17]
    Corazza G.E., Iyengar A.R., Papaleo M., Siegel P.H., Vanelli‐Coralli A., and Wolf J.K.: ‘Latency constrained protograph‐based LDPC convolutional codes’. Proc. IEEE Int. Symp. Turbo Codes and Iterative Information Processing, Brest, France, 2010, pp. 6–10
    [18]
    Richardson T.J., and Urbanke R.L.: ‘The capacity of low‐density parity‐check codes under message‐passing decoding’, IEEE Trans. Inf. Theory, 2001, IT‐47, pp. 599–618 (https://doi.org/10.1109/18.910577)
    [19]
    Lentmaier M., and Fettweis G.P.: ‘On the thresholds of generalized LDPC convolutional codes based on protographs’. Proc. IEEE Int. Symp. Information Theory, Austin, TX, USA, June 2010, pp. 709–713
    [20]
    Vafi S., and Wysocki T.: ‘Weight distribution of turbo codes with convolutional interleavers’, IET Commun., 2007, 1, (1), pp. 71–78 (https://doi.org/10.1049/iet-com:20060007)
    [21]
    Ashrafi R.A., and Pusane A.E.: ‘On the asymptotic performance of spatially‐coupled codes with minimal coupling’. Proc. Int. Symp. Signals, Systems, and Electronics, Potsdam, Germany, October 2012, pp. 355–360
    [22]
    Takeshita O., and Costello Jr., D.J.: ‘New classes of algebraic interleavers for turbo codes’. Proc. IEEE Int. Symp. Information Theory, August 1998, pp. 419
    [23]
    Heegard C., and Wicker S.B.: ‘Turbo coding’ (Kluwer Academic Publishers, Boston, MA, 1999)

    Recommendations

    Comments

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Aug 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media