Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Uncertainty Quantification for Hyperbolic Conservation Laws with Flux Coefficients Given by Spatiotemporal Random Fields

Published: 01 January 2016 Publication History

Abstract

In this paper hyperbolic partial differential equations (PDEs) with random coefficients are discussed. We consider the challenging problem of flux functions with coefficients modeled by spatiotemporal random fields. Those fields are given by correlated Gaussian random fields in space and Ornstein--Uhlenbeck processes in time. The resulting system of equations consists of a stochastic differential equation for each random parameter coupled to the hyperbolic conservation law. We define an appropriate solution concept in this setting and analyze errors and convergence of discretization methods. A novel discretization framework, based on Monte Carlo finite volume methods, is presented for the robust computation of moments of solutions to those random hyperbolic PDEs. We showcase the approach on two examples which appear in applications---the magnetic induction equation and linear acoustics---both with a spatiotemporal random background velocity field.

References

[1]
R. Abgrall, A Simple, Flexible and Generic Deterministic Approach to Uncertainty Quantifications in Non Linear Problems: Application to Fluid Flow Problems, Research report, Rapport de Recherche INRIA, Bordeaux, France, 2008.
[2]
R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monographs in Mathematics, Springer, New York, 2007.
[3]
A. Barth and A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations, Internat. J. Comput. Math., 89 (2012), pp. 2479--2498.
[4]
H. Bijl, D. Lucor, S. Mishra, and Ch. Schwab, eds., Uncertainty Quantification in Computational Fluid Dynamics, Lect. Notes Comput. Sci. Eng. 92, Springer, Heidelberg, 2013.
[5]
S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley, Los Angeles, CA, 1955.
[6]
Q.-Y. Chen, D. Gottlieb, and J. S. Hesthaven, Uncertainty analysis for the steady-state flows in a dual throat nozzle, J. Comput. Phys., 204 (2005), pp. 378--398.
[7]
M. C. C. Cunha and F. A. Dorini, A numerical scheme for the variance of the solution of the random transport equation, Appl. Math. Comput., 190 (2007), pp. 362--369.
[8]
K. Debrabant and A. Rößler, Classification of stochastic Runge--Kutta methods for the weak approximation of stochastic differential equations, Math. Comput. Simulation, 77 (2008), pp. 408--420.
[9]
F. A. Dorini and M. C. C. Cunha, A finite volume method for the mean of the solution of the random transport equation, Appl. Math. Comput., 187 (2007), pp. 912--921.
[10]
F. A. Dorini and M. C. C. Cunha, Statistical moments of the random linear transport equation, J. Comput. Phys., 227 (2008), pp. 8541--8550.
[11]
F. A. Dorini and M. C. C. Cunha, On the linear advection equation subject to random velocity fields, Math. Comput. Simulation, 82 (2011), pp. 679--690.
[12]
F. A. Dorini, F. Furtado, and M. C. C. Cunha, On the evaluation of moments for solute transport by random velocity fields, Appl. Numer. Math., 59 (2009), pp. 2994--2998.
[13]
F. G. Fuchs, K. H. Karlsen, S. Mishra, and N. H. Risebro, Stable upwind schemes for the magnetic induction equation, ESAIM Math. Model. Numer. Anal., 43 (2009), pp. 825--852.
[14]
E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws, Mathématiques & Applications (Paris) 3/4, Ellipses, Paris, 1991.
[15]
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci. 118, Springer-Verlag, New York, 1996.
[16]
D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients, Commun. Comput. Phys., 3 (2008), pp. 505--518.
[17]
S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89--112, http://dx.doi.org/10.1137/S003614450036757X
[18]
B. Gustafsson, H.-O. Kreiss, and J. Oliger, Time-Dependent Problems and Difference Methods, 2nd ed., Pure Appl. Math. (Hoboken), John Wiley & Sons, Hoboken, NJ, 2013.
[19]
A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes III, J. Comput. Phys., 71 (1987), pp. 231--303.
[20]
M. Jardak, C. H. Su, and G. E. Karniadakis, Spectral polynomial chaos solutions of the stochastic advection equation, in Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01), Vol. 17, Uppsala, Sweden, 2002, pp. 319--338.
[21]
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad Texts in Math. 113, Springer-Verlag, New York, 1991.
[22]
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability), corrected ed., Springer, New York, 2011.
[23]
P. E. Kloeden, E. Platen, and H. Schurz, Numerical solution of SDE through Computer Experiments, Universitext, Springer-Verlag, Berlin, 1994.
[24]
A. Lang and J. Potthoff, Fast simulation of Gaussian random fields, Monte Carlo Methods Appl., 17 (2011), pp. 195--214.
[25]
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, UK, 2002.
[26]
G. Lin, C. H. Su, and G. E. Karniadakis, The stochastic piston problem, Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 15840--15845.
[27]
G. Lin, C. H. Su, and G. E. Karniadakis, Predicting shock dynamics in the presence of uncertainties, J. Comput. Phys., 217 (2006), pp. 260--276.
[28]
G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Math. Appl. 313, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, translated and revised from the 1988 Russian original.
[29]
S. Mishra, N. H. Risebro, Ch. Schwab, and S. Tokareva, Numerical Solution of Scalar Conservation Laws with Random Flux Functions, Tech. report, Research report 2012-35, SAM ETH Zürich, Zürich, Switzerland, 2014.
[30]
S. Mishra and Ch. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), pp. 1979--2018.
[31]
S. Mishra, Ch. Schwab, and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, J. Comput. Phys., 231 (2012), pp. 3365--3388.
[32]
S. Mishra, Ch. Schwab, and J. Šukys, Multilevel Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions, SIAM J. Sci. Comput., 34 (2012), pp. B761--B784, http://dx.doi.org/10.1137/110857295
[33]
S. Mishra, Ch. Schwab, and J. Šukys, Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium, J. Comput. Phys., 312 (2016), pp. 192--217.
[34]
M. Motamed, F. Nobile, and R. Tempone, A stochastic collocation method for the second order wave equation with a discontinuous random speed, Numer. Math., 123 (2013), pp. 493--536.
[35]
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed., Universitext, Springer-Verlag, Berlin, 2003.
[36]
H. Osnes and H. P. Langtangen, A study of some finite difference schemes for a unidirectional stochastic transport equation, SIAM J. Sci. Comput., 19 (1998), pp. 799--812, http://dx.doi.org/10.1137/S1064827593259108
[37]
G. Poëtte, B. Després, and D. Lucor, Uncertainty quantification for systems of conservation laws, J. Comput. Phys., 228 (2009), pp. 2443--2467.
[38]
L. T. Santos, F. A. Dorini, and M. C. C. Cunha, The probability density function to the random linear transport equation, Appl. Math. Comput., 216 (2010), pp. 1524--1530.
[39]
C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes II, J. Comput. Phys., 83 (1989), pp. 32--78.
[40]
K. Sobczyk, Stochastic Differential Equations: With Applications to Physics and Engineering, Mathematics and Its Applications (East European Series) 40, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
[41]
J. Šukys, S. Mishra, and Ch. Schwab, Multi-level Monte Carlo finite difference and finite volume methods for stochastic linear hyperbolic systems, in Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proc. Math. Stat. 65, Springer, Heidelberg, 2013, pp. 649--666.
[42]
T. Tang and T. Zhou, Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed, Commun. Comput. Phys., 8 (2010), pp. 226--248.
[43]
J. Tryoen, O. Le Maitre, M. Ndjinga, and A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems, J. Comput. Phys., 229 (2010), pp. 6485--6511.
[44]
B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 135 (1997), pp. 227--248.
[45]
X. Wan and G. E. Karniadakis, Long-term behavior of polynomial chaos in stochastic flow simulations, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 5582--5596.
[46]
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1987, translated from the German by C. B. Thomas and M. J. Thomas.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 38, Issue 4
DOI:10.1137/sjoce3.38.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. stochastic hyperbolic partial differential equation
  2. uncertainty quantification
  3. spatiotemporal random field
  4. Monte Carlo method
  5. random flux function
  6. finite volume method
  7. Ornstein--Uhlenbeck process
  8. Gaussian random field

Author Tags

  1. 35L40
  2. 35L65
  3. 65C05
  4. 65C30
  5. 65M08

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media