Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Bilinear Quadratures for Inner Products

Published: 01 January 2016 Publication History

Abstract

A bilinear quadrature numerically evaluates a continuous bilinear map, such as the $L^2$ inner product, on continuous $f$ and $g$ belonging to known finite-dimensional function spaces. Such maps arise in Galerkin methods for differential and integral equations. The construction of bilinear quadratures over arbitrary domains in $\mathbb{R}^d$ is presented. In one dimension, integration rules of this type include Gaussian quadrature for polynomials and the trapezoidal rule for trigonometric polynomials as special cases. A numerical procedure for constructing bilinear quadratures is developed and validated.

References

[1]
W. R. Boland, The numerical solution of Fredholm integral equations using product type quadrature formulas, BIT, 12 (1972), pp. 5--16, http://dx.doi.org/10.1007/BF01932669
[2]
W. R. Boland and C. Duris, Product type quadrature formulas, BIT, 11 (1971), pp. 139--158, http://dx.doi.org/10.1007/BF01934362
[3]
J. Bremer, Z. Gimbutas, and V. Rokhlin, A nonlinear optimization procedure for generalized Gaussian quadratures, SIAM J. Sci. Comput., 32 (2010), pp. 1761--1788, http://dx.doi.org/10.1137/080737046 080737046.
[4]
J. Bremer, V. Rokhlin, and I. Sammis, Universal quadratures for boundary integral equations on two-dimensional domains with corners, J. Comput. Phys., 229 (2010), pp. 8259--8280, http://dx.doi.org//10.1016/j.jcp.2010.06.040
[5]
C. G. Broyden, The convergence of a class of double-rank minimization algorithms. $1.$ General considerations, IMA J. Appl. Math., 6 (1970), pp. 76--90, http://dx.doi.org/10.1093/imamat/6.1.76
[6]
J. Burkardt, Source Codes in Fortran90, http://people.sc.fsu.edu/ jburkardt/, 2016.
[7]
Y. Chen, Inner Product Quadratures, preprint, http://arxiv.org/abs/1205.0601arXiv:1205.0601, 2012.
[8]
H. Cheng, V. Rokhlin, and N. Yarvin, Nonlinear optimization, quadrature, and interpolation, SIAM J. Optim., 9 (1999), pp. 901--923, http://dx.doi.org/10.1137/S1052623498349796
[9]
R. Cools and K. J. Kim, A survey of known and new cubature formulas for the unit disk, Korean J. Comput. Appl. Math., 7 (2000), pp. 477--485, http://link.springer.com/article/10.1007/BF03012263
[10]
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Comput. Sci. Appl. Math., Academic Press, Inc., Orlando, FL, 1984.
[11]
J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997, http://dx.doi.org/10.1137/1.9781611971446 BF03012263.
[12]
D. A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int. J. Numer. Methods Engrg., 21 (1985), pp. 1129--1148, http://onlinelibrary.wiley.com/doi/10.1002/nme.1620210612/full
[13]
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004, http://dx.doi.org/10.1007/978-1-4757-4355-5
[14]
R. Fletcher, A new approach to variable metric algorithms, Comput. J., 13 (1970), pp. 317--322, http://dx.doi.org/10.1093/comjnl/13.3.317
[15]
D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comp., 24 (1970), pp. 23--26.
[16]
G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969), pp. A1--A10.
[17]
J. Gribble, Interpolatory inner product quadrature formulas, BIT, 20 (1980), pp. 466--474, http://dx.doi.org/10.1007/BF01933640
[18]
L. Knockaert, A bilinear quadrature rule for the finite Hankel transform, in Proceedings of AFRICON 2007, IEEE Press, Piscataway, NJ, 2007, pp. 1--4, http://dx.doi.org/10.1109/AFRCON.2007.4401442 2007.4401442.
[19]
E. Luik and K. Zeller, Numerische approximation von bilinearformen, Results Math., 11 (1987), pp. 374--383, http://dx.doi.org/10.1007/BF03323280
[20]
J. F. McGrath, Gaussian product-type quadratures, Appl. Math. Comput., 5 (1979), pp. 265--280, http://dx.doi.org/10.1016/0096-3003(79)90018-3
[21]
M. L. Overton and R. S. Womersley, Second derivatives for optimizing eigenvalues of symmetric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 697--718, http://dx.doi.org/10.1137/S089547989324598X S089547989324598X.
[22]
D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp., 24 (1970), pp. 647--656.
[23]
A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM J. Optim., 5 (1995), pp. 552--569, http://dx.doi.org/10.1137/0805028
[24]
A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Ser. Automat. Comput., Prentice-Hall Inc., Englewood Cliffs, NJ, 1971.
[25]
W. J. Tango, The circle polynomials of Zernike and their application in optics, Appl. Phys., 13 (1977), pp. 327--332, http://dx.doi.org/10.1007/BF00882606
[26]
B. Vioreanu and V. Rokhlin, Spectra of multiplication operators as a numerical tool, SIAM J. Sci. Comput., 36 (2014), pp. A267--A288, http://dx.doi.org/10.1137/110860082
[27]
H. Xiao and Z. Gimbutas, A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Comput. Math. Appl., 59 (2010), pp. 663--676, http://dx.doi.org/10.1016/j.camwa.2009.10.027

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 38, Issue 4
DOI:10.1137/sjoce3.38.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. multivariate integration
  2. inner products
  3. Gaussian quadrature
  4. Galerkin methods
  5. nonlinear optimization

Author Tags

  1. 65D32
  2. 65N30

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media