Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Quasi-Polynomial Approximation for the Restricted Assignment Problem

Published: 01 January 2020 Publication History

Abstract

The Restricted Assignment problem is a prominent special case of Scheduling on Unrelated Parallel Machines. For the strongest known linear programming relaxation, the configuration LP, we improve the nonconstructive bound on its integrality gap from 1.9412 to 1.8334 and significantly simplify the proof. Then we give a constructive variant, yielding a 1.8334-approximation in quasi-polynomial time. This is the first quasi-polynomial algorithm for this problem improving on the long-standing approximation rate of 2.

References

[1]
C. Annamalai, Lazy Local Search Meets Machine Scheduling, preprint, https://arxiv.org/abs/1611.07371, 2016.
[2]
C. Annamalai, C. Kalaitzis, and O. Svensson, Combinatorial algorithm for restricted max-min fair allocation, ACM Trans. Algorithms, 13 (2017), 37, https://doi.org/10.1145/3070694.
[3]
A. Asadpour, U. Feige, and A. Saberi, Santa Claus meets hypergraph matchings, ACM Trans. Algorithms, 8 (2012), 24, https://doi.org/10.1145/2229163.2229168.
[4]
N. Bansal and M. Sviridenko, The Santa Claus problem, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, 2006, pp. 31--40, https://doi.org/10.1145/1132516.1132522.
[5]
D. Chakrabarty, S. Khanna, and S. Li, On $(1, \epsilon)$-restricted assignment makespan minimization, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015 (San Diego, CA), ACM, New York, SIAM, Philadelphia, 2015, pp. 1087--1101, https://doi.org/10.1137/1.9781611973730.73.
[6]
S. Cheng and Y. Mao, Restricted max-min allocation: Approximation and integrality gap, in 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 (Patras, Greece), C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, eds., of LIPIcs. Leibniz Int. Proc. Inform. 132, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany, 2019, 38, https://doi.org/10.4230/LIPIcs.ICALP.2019.38.
[7]
S. Davies, T. Rothvoss, and Y. Zhang, A tale of Santa Claus, hypergraphs and matroids, in Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 (Salt Lake City, UT), S. Chawla, ed., ACM, New York, SIAM, Philadelphia, 2020, pp. 2748--2757, https://doi.org/10.1137/1.9781611975994.167.
[8]
K. Jansen, K. Land, and M. Maack, Estimating the makespan of the two-valued restricted assignment problem, in 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016 (Reykjavik, Iceland), 2016, 24, https://doi.org/10.4230/LIPIcs.SWAT.2016.24.
[9]
J. K. Lenstra, D. B. Shmoys, and É. Tardos, Approximation algorithms for scheduling unrelated parallel machines, Math. Program., 46 (1990), pp. 259--271, https://doi.org/10.1007/BF01585745.
[10]
L. Polácek and O. Svensson, Quasi-polynomial local search for restricted max-min fair allocation, ACM Trans. Algorithms, 12 (2016), 13, https://doi.org/10.1145/2818695.
[11]
P. Schuurman and G. J. Woeginger, Polynomial time approximation algorithms for machine scheduling: Ten open problems, J. Scheduling, 2 (1999), pp. 203--213, https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5<203::AID-JOS26>3.0.CO;2-5.
[12]
O. Svensson, Santa Claus schedules jobs on unrelated machines, SIAM J. Comput., 41 (2012), pp. 1318--1341, https://doi.org/10.1137/110851201.
[13]
D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press, Cambridge, UK, 2011, https://doi.org/10.1017/CBO9780511921735.

Cited By

View all
  • (2023)Better Trees for Santa ClausProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585174(1862-1875)Online publication date: 2-Jun-2023
  • (2023)Quasi-polynomial time approximation schemes for assortment optimization under Mallows-based rankingsMathematical Programming: Series A and B10.1007/s10107-023-02033-4208:1-2(111-171)Online publication date: 11-Dec-2023
  • (2022)Resource Time-Sharing for IoT Applications with DeadlinesAlgorithmics of Wireless Networks10.1007/978-3-031-22050-0_7(91-107)Online publication date: 8-Sep-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 49, Issue 6
DOI:10.1137/smjcat.49.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2020

Author Tags

  1. scheduling
  2. integrality gap
  3. approximation
  4. unrelated machines
  5. local search

Author Tag

  1. 68Q25

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Better Trees for Santa ClausProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585174(1862-1875)Online publication date: 2-Jun-2023
  • (2023)Quasi-polynomial time approximation schemes for assortment optimization under Mallows-based rankingsMathematical Programming: Series A and B10.1007/s10107-023-02033-4208:1-2(111-171)Online publication date: 11-Dec-2023
  • (2022)Resource Time-Sharing for IoT Applications with DeadlinesAlgorithmics of Wireless Networks10.1007/978-3-031-22050-0_7(91-107)Online publication date: 8-Sep-2022

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media