Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

6TiSCH – IPv6 Enabled Open Stack IoT Network Formation: A Review

Published: 13 July 2022 Publication History

Abstract

The IPv6 over IEEE 802.15.4e TSCH mode (6TiSCH) network is intended to provide reliable and delay bounded communication in multi-hop and scalable Industrial Internet of Things (IIoT). The IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) link layer protocol allows the nodes to change their physical channel after each transmission to eliminate interference and multi-path fading on the channels. However, due to this feature, new nodes (aka pledges) take more time to join the 6TiSCH network, resulting in significant energy consumption and inefficient data transmission, which makes the communication unreliable. Therefore, the formation of 6TiSCH network has gained immense interest among the researchers. To date, numerous solutions have been offered by various researchers in order to speed up the formation of 6TiSCH networks. This article briefly discusses about the 6TiSCH network and its formation process, followed by a detailed survey on the works that considered 6TiSCH network formation. We also perform theoretical analysis and real testbed experiments for a better understanding of the existing works related to 6TiSCH network formation. This article is concluded after summarizing the research challenges in 6TiSCH network formation and providing a few open issues in this domain of work.

References

[1]
Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things: A survey. Computer Networks 54, 15 (2010), 2787–2805.
[2]
Li Da Xu, Wu He, and Shancang Li. 2014. Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics 10, 4 (2014), 2233–2243.
[3]
John A. Stankovic. 2014. Research directions for the internet of things. IEEE Internet of Things Journal 1, 1 (2014), 3–9.
[4]
Thomas Watteyne, Vlado Handziski, Xavier Vilajosana, Simon Duquennoy, Oliver Hahm, Emmanuel Baccelli, and Adam Wolisz. 2016. Industrial wireless ip-based cyber -physical systems. Proceedings of the IEEE 104, 5 (2016), 1025–1038.
[5]
Kun Wang, Yihui Wang, Yanfei Sun, Song Guo, and Jinsong Wu. 2016. Green industrial internet of things architecture: An energy-efficient perspective. IEEE Communications Magazine 54, 12 (2016), 48–54.
[6]
Stephanie B. Baker, Wei Xiang, and Ian Atkinson. 2017. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access 5 (2017), 26521–26544.
[7]
Adam B. Noel, Abderrazak Abdaoui, Tarek Elfouly, Mohamed Hossam Ahmed, Ahmed Badawy, and Mohamed S. Shehata. 2017. Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys Tutorials 19, 3 (2017), 1403–1423.
[8]
Mussab Alaa, A. A. Zaidan, B. B. Zaidan, Mohammed Talal, and M. L. M. Kiah. 2017. A review of smart home applications based on internet of things. Journal of Network and Computer Applications 97 (2017), 48–65.
[9]
Eunil Park, Yongwoo Cho, Jinyoung Han, and Sang Jib Kwon. 2017. Comprehensive approaches to user acceptance of internet of things in a smart home environment. IEEE Internet of Things Journal 4, 6 (2017), 2342–2350.
[10]
Saraju P. Mohanty, Uma Choppali, and Elias Kougianos. 2016. Everything you wanted to know about smart cities: The internet of things is the backbone. IEEE Consumer Electronics Magazine 5, 3 (2016), 60–70.
[11]
Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi. 2014. Internet of things for smart cities. IEEE Internet of Things Journal 1, 1 (2014), 22–32.
[12]
Yuke Li, Xiang Cheng, Yang Cao, Dexin Wang, and Liuqing Yang. 2018. Smart choice for the smart grid: Narrowband internet of things (NB-IoT). IEEE Internet of Things Journal 5, 3 (2018), 1505–1515.
[13]
Miao Yun and Bu Yuxin. 2010. Research on the architecture and key technology of internet of things (IoT) applied on smart grid. In Proceedings of the 2010 International Conference on Advances in Energy Engineering. 69–72.
[14]
Shanzhi Chen, Hui Xu, Dake Liu, Bo Hu, and Hucheng Wang. 2014. A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet of Things Journal 1, 4 (2014), 349–359.
[15]
Nurzaman Ahmed, Debashis De, and Iftekhar Hussain. 2018. Internet of things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet of Things Journal 5, 6 (2018), 4890–4899.
[16]
Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton. 2010. Smart objects as building blocks for the internet of things. IEEE Internet Computing 14, 1 (2010), 44–51.
[17]
Mo Sha, Dolvara Gunatilaka, Chengjie Wu, and Chenyang Lu. 2017. Empirical study and enhancements of industrial wireless sensor-actuator network protocols. IEEE Internet of Things Journal 4, 3 (2017), 696–704.
[18]
Ivan Stojmenovic. 2014. Machine-to-machine communications with in-network data aggregation, processing, and actuation for large-scale cyber-physical systems. IEEE Internet of Things Journal 1, 2 (2014), 122–128.
[19]
Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Luigi Alfredo Grieco, Gennaro Boggia, and Mischa Dohler. 2013. Standardized protocol stack for the internet of (important) things. IEEE Communications Surveys Tutorials 15, 3 (2013), 1389–1406.
[20]
Adnan Aijaz and A. Hamid Aghvami. 2015. Cognitive machine-to-machine communications for internet-of-things: A protocol stack perspective. IEEE Internet of Things Journal 2, 2 (2015), 103–112. DOI:
[21]
Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials 17, 4 (2015), 2347–2376. DOI:
[22]
Stanislav Safaric and Kresimir Malaric. 2006. ZigBee wireless standard. In Proceedings of the ELMAR 2006. 259–262. DOI:
[23]
2006. IEEE standard for information technology– local and metropolitan area networks– specific requirements– part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs). IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003) (2006), 1–320. DOI:
[24]
2005. IEEE standard for information technology– local and metropolitan area networks– specific requirements– part 15.1a: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPAN). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002) (2005), 1–700. DOI:
[25]
Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon, and Wally Pratt. 2008. WirelessHART: Applying wireless technology in real-time industrial process control. In Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications Symposium. 377–386. DOI:
[26]
2011. Wireless systems for industry automation: Process control and related applications. ISA-100.11a-2011 Standard (2011), 1–793.
[27]
Almudena Díaz Zayas and Pedro Merino. 2017. The 3GPP NB-IoT system architecture for the internet of things. In Proceedings of the 2017 IEEE International Conference on Communications Workshops. 277–282. DOI:
[28]
2017. IEEE standard for information technology–telecommunications and information exchange between systems - local and metropolitan area networks–specific requirements - part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 2: Sub 1 GHz license exempt operation. IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016) (2017), 1–594. DOI:
[29]
Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. 2016. A study of LoRa: Long range & low power networks for the internet of things. Sensors 16, 9 (2016), 1–18. DOI:
[30]
Harrison Kurunathan, Ricardo Severino, Anis Koubaa, and Eduardo Tovar. 2018. IEEE 802.15.4e in a nutshell: Survey and performance evaluation. IEEE Communications Surveys Tutorials 20, 3 (2018), 1989–2010. DOI:
[31]
Sofie Pollin, Mustafa Ergen, Sinem Coleri Ergen, Bruno Bougard, Liesbet Van Der Perre, Ingrid Moerman, Ahmad Bahai, Pravin Varaiya, and Francky Catthoor. 2008. Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications 7, 9 (2008), 3359–3371. DOI:
[32]
2012. IEEE standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (April 2012), 1–225. DOI:
[33]
Domenico De Guglielmo, Simone Brienza, and Giuseppe Anastasi. 2016. IEEE 802.15.4e: A survey. Computer Communications 88 (2016), 1–24. DOI:
[34]
2016. IEEE standard for low-rate wireless networks. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) (April 2016), 1–709. DOI:
[35]
Thomas Watteyne, Maria Rita Palattella, and Luigi Alfredo Grieco. 2015. Using IEEE 802.15.4e Time-slotted channel hopping (TSCH) in the Internet of Things (IoT): Problem statement. Internet Engineering Task ForceRFC 7554. (2015). DOI:
[36]
Stig Petersen, Paula Doyle, Svein Vatland, Christian Salbu Aasland, Trond Michael Andersen, and Dag Sjong. 2007. Requirements, drivers and analysis of wireless sensor network solutions for the Oil Gas industry. In Proceedings of the 2007 IEEE Conference on Emerging Technologies and Factory Automation. 219–226. DOI:
[37]
Atis Elsts, Xenofon Fafoutis, George Oikonomou, Robert Piechocki, and Ian Craddock. 2020. TSCH networks for health IoT: Design, evaluation, and trials in the wild. ACM Transactions on Internet of Things 1, 2 (2020), 27 pages. DOI:
[38]
Rajeev Piyare, George Oikonomou, and Atis Elsts. 2020. TSCH for long range low data rate applications. IEEE Access 8 (2020), 228754–228766. DOI:
[39]
Xavier Vilajosana, Thomas Watteyne, Tengfei Chang, Mališa Vučinić, Simon Duquennoy, and Pascal Thubert. 2020. IETF 6TiSCH: A tutorial. IEEE Communications Surveys Tutorials 22, 1 (2020), 595–615. DOI:
[40]
Mališa Vučinić, Jonathan Simon, Kris Pister, and Michael Richardson. 2021. Constrained Join Protocol (CoJP) for 6TiSCH. Technical Report 9031. IETF. DOI:
[41]
Seema Kharb and Anita Singhrova. 2019. A survey on network formation and scheduling algorithms for time slotted channel hopping in industrial networks. Journal of Network and Computer Applications 126 (2019), 59–87. DOI:
[42]
Atis Elsts, Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim. 2020. An empirical survey of autonomous scheduling methods for TSCH. IEEE Access 8 (2020), 67147–67165. DOI:
[43]
Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Theoleyre. 2017. Scheduling for IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial wireless networks: A survey. Computer Communications 114 (2017), 84–105. DOI:
[44]
Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki - a lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks455–462. DOI:
[45]
Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton, Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner, Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A large scale open experimental IoT testbed. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things. 459–464. DOI:
[46]
Geoff Mulligan. 2007. The 6LoWPAN architecture. In Proceedings of the 4th Workshop on Embedded Networked Sensors. Association for Computing Machinery, New York, NY, 78–82. DOI:
[47]
Carles Gomez, Josep Paradells, Carsten Bormann, and Jon Crowcroft. 2017. From 6LoWPAN to 6Lo: Expanding the universe of IPv6-supported technologies for the internet of things. IEEE Communications Magazine 55, 12 (2017), 148–155. DOI:
[48]
D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert. 2014. 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE Communications Magazine 52, 12(2014), 36–41. DOI:
[49]
Xavier Vilajosana, Kris Pister, and Thomas Watteyne. 2017. Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. RFC 8180. IETF. DOI:
[50]
Michael Richardson. 2019. 6TiSCH Zero-Touch Secure Join Protocol. draft-ietf-6tisch-dtsecurity-zerotouch-join-04 [work-in-progress]. Internet Engineering Task Force.
[51]
Tero Kivinen and Pat Kinney. 2017. IEEE 802.15.4 Information Element for the. Technical Report 8137. IETF. DOI:
[52]
Qin Wang, Xavier Vilajosana, and Thomas Watteyne. 2018. 6TiSCH Operation Sublayer (6top) Protocol (6P). RFC 8480. IETF. DOI:
[53]
Tengfei Chang, Mališa Vučinić, Xavier Vilajosana, Simon Duquennoy, and Diego Roberto Dujovne. 2021. 6TiSCH Minimal Scheduling Function. Technical Report 9033. IETF. DOI:
[54]
Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. 2015. Orchestra: Robust mesh networks through autonomously scheduled TSCH. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. 337–350. DOI:
[55]
Seungbeom Jeong, Hyung-Sin Kim, Jeongyeup Paek, and Saewoong Bahk. 2020. OST: On-demand TSCH scheduling with traffic-awareness. In Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 69–78. DOI:
[56]
Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim. 2019. ALICE: Autonomous link-based cell scheduling for TSCH. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks. Association for Computing Machinery, New York, NY, 121–132. DOI:
[57]
Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar. 2007. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. Technical Report 4944. IETF. DOI:
[58]
Pascal Thubert and Jonathan Hui. 2011. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. Technical Report 6282. IETF. DOI:
[59]
Pascal Thubert and Robert Cragie. 2016. IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Paging Dispatch. Technical Report 8025. IETF. DOI:
[60]
Pascal Thubert, Carsten Bormann, Laurent Toutain, and Robert Cragie. 2017. IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing Header. Technical Report 8138. IETF. DOI:
[61]
T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. P. Vasseur, and R. Alexander. 2012. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550. DOI:
[62]
Pascal Thubert. 2012. Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks. Technical Report 6552. IETF. DOI:
[63]
Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The Constrained Application Protocol. Technical Report 7252. IETF. DOI:
[64]
Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim, Kevin Weekly, Qin Wang, Steven Glaser, and Kris Pister. 2012. OpenWSN: A standards-based low-power wireless development environment. Transactions on Emerging Telecommunications Technologies 23, 5 (2012), 480–493.
[65]
Emmanuel Baccelli, Oliver Hahm, Mesut Günes, Matthias Wählisch, and Thomas C. Schmidt. 2013. RIOT OS: Towards an OS for the internet of things. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops. 79–80. DOI:
[66]
Esteban Municio, Glenn Daneels, Mališa Vučinić, Steven Latré, Jeroen Famaey, Yasuyuki Tanaka, Keoma Brun, Kazushi Muraoka, Xavier Vilajosana, and Thomas Watteyne. 2019. Simulating 6TiSCH networks. Transactions on Emerging Telecommunications Technologies 30, 3 (2019), e3494.
[67]
Mališa Vučinić, Michał Król, Baptiste Jonglez, Titouan Coladon, and Bernard Tourancheau. 2017. Trickle-D: High fairness and low transmission load with dynamic redundancy. IEEE Internet of Things Journal 4, 5 (2017), 1477–1488. DOI:
[68]
Baraq Ghaleb, Ahmed Y. Al-Dubai, Elias Ekonomou, Imed Romdhani, Youssef Nasser, and Azzedine Boukerche. 2018. A novel adaptive and efficient routing update scheme for low-power lossy networks in IoT. IEEE Internet of Things Journal 5, 6 (2018), 5177–5189. DOI:
[69]
D. De Guglielmo, A. Seghetti, G. Anastasi, and M. Conti. 2014. A performance analysis of the network formation process in IEEE 802.15.4e TSCH wireless sensor/actuator networks. In Proceedings of the IEEE Symposium on Computers and Communications.1–6. DOI:
[70]
D. De Guglielmo, S. Brienza, and G. Anastasi. 2016. A model-based beacon scheduling algorithm for IEEE 802.15.4e TSCH networks. In Proceedings of the IEEE 17th International Symposium on A World Wireless, Mobile Multimedia Networks.1–9. DOI:
[71]
E. Vogli, G. Ribezzo, L. A. Grieco, and G. Boggia. 2015. Fast join and synchronization scheme in the IEEE 802.15.4e MAC. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops. 85–90. DOI:
[72]
Thang Phan Duy and YoungHan Kim. 2015. An efficient joining scheme in IEEE 802.15.4e. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence. 226–229. DOI:
[73]
Thang Phan Duy, Thanh Dinh, and Younghan Kim. 2016. A rapid joining scheme based on fuzzy logic for highly dynamic IEEE 802.15.4e time-slotted channel hopping networks. International Journal of Distributed Sensor Networks 12, 8 (2016), 1–10.
[74]
Elvis Vogli, Giuseppe Ribezzo, L. Alfredo Grieco, and Gennaro Boggia. 2018. Fast network joining algorithms in industrial IEEE 802.15.4 deployments. Ad Hoc Networks. 69 (2018), 65–75. DOI:
[75]
Ines Khoufi, Pascale Minet, and Badr Rmili. 2017. Beacon advertising in an IEEE 802.15.4e TSCH network for space launch vehicles. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences. 1–15.
[76]
Ines Khoufi and Pascale Minet. 2018. An enhanced deterministic beacon advertising algorithm for building TSCH networks. Annals of Telecommunications 73 (2018), 745–757.
[77]
Apostolos Karalis. 2018. ATP: A fast joining technique for IEEE802.15. 4-TSCH networks. In Proceedings of the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks.” 588–599. DOI:
[78]
Carlos M. García Algora, Vitalio Alfonso Reguera, Evelio M. García Fernández, and Kris Steenhaut. 2018. Parallel rendezvous-based association for IEEE 802.15.4 TSCH Networks. IEEE Sensors Journal 18, 21 (2018), 9005–9020. DOI:
[79]
Byeong-Hwan Bae and Sang-Hwa Chung. 2020. Fast synchronization scheme using 2-way parallel rendezvous in IEEE 802.15.4 TSCH. Sensors 20, 5 (2020), 1–19. DOI:
[80]
Mohamed Mohamadi, Badis Djamaa, Mustapha Reda Senouci, and Abdelhamid Mellouk. 2021. FAN: Fast and active network formation in IEEE 802.15.4 TSCH networks. Journal of Network and Computer Applications. 183–184 (2021), 103026. DOI:
[81]
Carlos Manuel García Algora, Erik Ortiz Guerra, Samuel Montejo-Sánchez, Evelio M. García Fernández, and Kris Steenhaut. 2021. A theoretical association time model for IEEE 802.15.4 TSCH networks. IEEE Communications Letters 25, 2 (2021), 656–659. DOI:
[82]
C. Vallati, S. Brienza, G. Anastasi, and S. K. Das. 2019. Improving network formation in 6TiSCH networks. IEEE Transactions on Mobile Computing 18, 1 (2019), 98–110. DOI:
[83]
A. Kalita and M. Khatua. 2021. Autonomous allocation and scheduling of minimal cell in 6TiSCH network. IEEE Internet of Things Journal 8, 15 (2021), 12242–12250. DOI:
[84]
Malisa Vucinic, Thomas Watteyne, and Xavier Vilajosana. 2017. Broadcasting strategies in 6TiSCH networks. Internet Technology Letters 1, 1 (2017), 1–6.
[85]
P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. 2011. The Trickle Algorithm. RFC 6206. IETF.
[86]
Alakesh Kalita and Manas Khatua. 2019. Faster joining in 6TiSCH network using dynamic beacon interval. In Proceedings of the 2019 11th International Conference on Communication Systems Networks. 454–457. DOI:
[87]
A. Kalita and M. Khatua. 2021. Channel condition based dynamic beacon interval for faster formation of 6TiSCH network. IEEE Transactions on Mobile Computing 20, 7 (2021), 2326–2337. DOI:
[88]
Alakesh Kalita and Manas Khatua. 2020. Opportunistic priority alternation scheme for faster formation of 6TiSCH network. In Proceedings of the 21st International Conference on Distributed Computing and Networking. 1–5.
[89]
A. Kalita and M. Khatua. 2021. Opportunistic transmission of control packets for faster formation of 6TiSCH network. ACM Transactions on Internet of Things 2, 1 (2021), 29 pages. DOI:
[90]
Alakesh Kalita and Manas Khatua. 2021. Adaptive control packet broadcasting scheme for faster 6TiSCH network bootstrapping. IEEE Internet of Things Journal 8, 24 (2021), 17395–17402.
[91]
C. Vallati and E. Mingozzi. 2013. Trickle-F: Fair broadcast suppression to improve energy-efficient route formation with the RPL routing protocol. In Proceedings of the Sustainable Internet and ICT for Sustainability. 1–9.
[92]
S. Aljawarneh, M. B. Yassein, and E. Masa’deh. 2017. A new elastic trickle timer algorithm for Internet of Things. Journal of Network and Computer Applications 89 (2017), 38–47.
[93]
S. Murali and A. Jamalipour. 2019. Mobility-aware energy-efficient parent selection algorithm for low power and lossy networks. IEEE Internet of Things Journal 6, 2 (2019), 2593–2601.
[94]
A. Kalita and M. Khatua. 2022. A Noncooperative Gaming Approach for Control Packet Transmission in 6TiSCH Network. IEEE Internet of Things Journal 9, 5 (2022), 3954–3961. DOI:
[95]
X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J. Pister. 2014. A realistic energy consumption model for TSCH networks. IEEE Sensors Journal 14, 2 (2014), 482–489.
[96]
Hyung-Sin Kim, Jeonggil Ko, David E. Culler, and Jeongyeup Paek. 2017. Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): A survey. IEEE Communications Surveys Tutorials 19, 4 (2017), 2502–2525.
[97]
David Stanislowski, Xavier Vilajosana, Qin Wang, Thomas Watteyne, and Kristofer S. J. Pister. 2014. Adaptive synchronization in IEEE802.15.4e networks. IEEE Transactions on Industrial Informatics 10, 1 (2014), 795–802.
[98]
Tengfei Chang, Thomas Watteyne, Kris Pister, and Qin Wang. 2015. Adaptive synchronization in multi-hop TSCH networks. Computer Networks 76 (2015), 165–176.
[99]
Yassine Boufenneche, Rafik Zitouni, Laurent George, and Nawel Gharbi. 2020. Network formation in 6TiSCH industrial internet of things under misbehaved nodes. In Proceedings of the 2020 7th International Conference on Internet of Things: Systems, Management and Security. 1–6.
[100]
Alakesh Kalita, Alessandro Brighente, Manas Khatua, and Mauro Conti. 2022. Effect of DIS attack on 6TiSCH network formation. IEEE Communications Letters 26, 5 (2022), 1190–1193.
[101]
Cong Pu. 2020. Sybil attack in RPL-based internet of things: Analysis and defenses. IEEE Internet of Things Journal 7, 6 (2020), 4937–4949. DOI:
[102]
Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. 2015. Security for the internet of things: A survey of existing protocols and open research issues. IEEE Communications Surveys Tutorials 17, 3 (2015), 1294–1312. DOI:
[103]
Michael Baddeley, Reza Nejabati, George Oikonomou, Sedat Gormus, Mahesh Sooriyabandara, and Dimitra Simeonidou. 2017. Isolating SDN control traffic with layer-2 slicing in 6TiSCH industrial IoT networks. In Proceedings of the 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks. 247–251.
[104]
Michael Baddeley, Usman Raza, Aleksandar Stanoev, George Oikonomou, Reza Nejabati, Mahesh Sooriyabandara, and Dimitra Simeonidou. 2019. Atomic-SDN: Is synchronous flooding the solution to software-defined networking in IoT? IEEE Access 7 (2019), 96019–96034.

Cited By

View all
  • (2024)Integrating Battery-Less Energy Harvesting Devices in Multi-Hop Industrial Wireless Sensor NetworksIEEE Communications Magazine10.1109/MCOM.001.230058662:7(66-73)Online publication date: Jul-2024
  • (2024)Optimizing Cell Allocation in 6TiSCH Networks based on Node Density Using K-Means Clustering2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC)10.1109/ICEIEC61773.2024.10561860(1-4)Online publication date: 24-May-2024
  • (2024)On the Impact of the RPL Decreased Rank Attack on 6TiSCH Networks2024 20th International Conference on the Design of Reliable Communication Networks (DRCN)10.1109/DRCN60692.2024.10539163(70-75)Online publication date: 6-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Internet of Things
ACM Transactions on Internet of Things  Volume 3, Issue 3
August 2022
251 pages
EISSN:2577-6207
DOI:10.1145/3514184
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 13 July 2022
Online AM: 10 May 2022
Accepted: 01 May 2022
Revised: 01 March 2022
Received: 01 September 2021
Published in TIOT Volume 3, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Industrial Internet of Things
  2. IEEE 802.15.4e
  3. 6TiSCH
  4. network formation

Qualifiers

  • Survey
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)257
  • Downloads (Last 6 weeks)25
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Integrating Battery-Less Energy Harvesting Devices in Multi-Hop Industrial Wireless Sensor NetworksIEEE Communications Magazine10.1109/MCOM.001.230058662:7(66-73)Online publication date: Jul-2024
  • (2024)Optimizing Cell Allocation in 6TiSCH Networks based on Node Density Using K-Means Clustering2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC)10.1109/ICEIEC61773.2024.10561860(1-4)Online publication date: 24-May-2024
  • (2024)On the Impact of the RPL Decreased Rank Attack on 6TiSCH Networks2024 20th International Conference on the Design of Reliable Communication Networks (DRCN)10.1109/DRCN60692.2024.10539163(70-75)Online publication date: 6-May-2024
  • (2024)A look into smart factory for Industrial IoT driven by SDN technology: A comprehensive survey of taxonomy, architectures, issues and future research orientationsJournal of King Saud University - Computer and Information Sciences10.1016/j.jksuci.2024.10206936:5(102069)Online publication date: Jun-2024
  • (2024)6TiSCH IIoT network: A reviewComputer Networks10.1016/j.comnet.2024.110759254(110759)Online publication date: Dec-2024
  • (2024)A Review of IoT Applications in Smart Environments: From Smart Cities to Military IntegrationAdvances in Intelligent Computing Techniques and Applications10.1007/978-3-031-59707-7_16(176-190)Online publication date: 11-May-2024
  • (2023)Time-Variant RGB Model for Minimal Cell Allocation and Scheduling in 6TiSCH NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2023.324102123:2(1803-1814)Online publication date: 31-Jan-2023
  • (2023)Efficient Schemes for Improved Performance in 6TiSCH NetworksIEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS57453.2023.10225947(1-6)Online publication date: 20-May-2023
  • (2023)Promising Role of Visual IoT: Challenges and Future Research DirectionsIEEE Engineering Management Review10.1109/EMR.2023.330412151:4(169-178)Online publication date: Dec-2023
  • (2023)HANNA: Human-friendly provisioning and configuration of smart devicesEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106745126(106745)Online publication date: Nov-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media