Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3688868.3689198acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

EAH-Net: A Novel Ensemble Attention-Based Hybrid Architecture for Breast Cancer Diagnosis Utilizing Ultrasound Images

Published: 31 October 2024 Publication History

Abstract

Breast cancer is a complex and often fatal malignancy in women worldwide, requiring thorough medical examinations. Accurately detecting breast cancer is challenging due to its diverse forms, stages, symptoms, and diagnostic techniques. With advancements in artificial intelligence, an automated computerized method can potentially aid radiologists in the early detection of breast cancer. This study presents a novel and robust deep neural network, EAH-Net, for breast cancer diagnosis using ultrasound images. The EAH-Net architecture comprises an ensemble attention module, a modified UNet model that performs segmentation by isolating regions of interest, and a hybrid approach to classify breast cancers accurately. Besides, we employed explainable AI techniques to highlight the most significant regions, assisting radiologists in making more informed decisions. The proposed segmentation framework yields promising outcomes across Jaccard, Precision, Recall, Specificity, and Dice metrics, averaging 89.26 ± 0.36, 91.79 ± 1.13, 92.98 ± 1.08, 99.38 ± 0.35, and 95.26 ± 0.45 percents, respectively. The hybrid classification framework demonstrates outstanding performance with an accuracy of 98.48 ± 0.18%. Overall, EAH-Net offers a reliable and robust computer-aided solution for automated breast cancer diagnosis.

References

[1]
R. L. Siegel, K. D. Miller, and A. Jemal. Cancer statistics, 2017. CA. Cancer J. Clin., 67(1):7--30, 2017.
[2]
K. Unger-Saldaña. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J. Clin. Oncol., 5(3):465--477, 2014.
[3]
U. M. D. E. C. D. E. Los. Breast cancer statistics and resources, 2017. URL https://www.bcrf.org/breast-cancer-statistics-and-resources/.
[4]
D. M. Parkin, P. Pisani, and J. Ferlay. Global cancer statistics. CA. Cancer J. Clin., 49(1):33--64, 1999.
[5]
C.Fitzmaurice et al. The global burden of cancer 2013. JAMA Oncol., 1(4):505--527, 2015.
[6]
J. Ferlay et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 127(12):2893--2917, 2010.
[7]
A. R. Beeravolu, S. Azam, M. Jonkman, B. Shanmugam, K. Kannoorpatti, and A. Anwar. Preprocessing of breast cancer images to create datasets for deep-CNN. IEEE Access, 9:33438--33463, 2021.
[8]
R. Irfan, A. A. Almazroi, H. T. Rauf, E. A. Nasr, and A. E. Abdel gawad. Dilatedsemanticsegmentationforbreastultrasonic lesion detection using parallel feature fusion. Diagnostics, 11(7), 2021.
[9]
American Cancer Society. Breast cancer early detection and diagnosis | how to detect breast cancer, 2021. URL https://www.cancer.org/cancer/breast-cancer/ screening-tests-and-early-detection.html.
[10]
T. Pang, J. H. D. Wong, W. L. Ng, and C. S. Chan. Deep learning radiomics in breast cancer with different modalities: Overview and future. Expert Syst. Appl., 158, 2020.
[11]
D. R. Chen and Y. H. Hsiao. Computer-aided diagnosis in breast ultrasound. J. Med. Ultrasound, 16(1):46--56, 2008.
[12]
A. F. Moustafa et al. Color doppler ultrasound improves machine learning diag nosis of breast cancer. Diagnostics, 10(9), 2020.
[13]
Shakil Rana, Md Jabed Hosen, Tasnim Jahan Tonni, Md Awlad Hossen Rony, Kaniz Fatema, Md Zahid Hasan, Md Tanvir Rahman, Risala Tasin Khan, Tony Jan, and Md Whaiduzzaman. DeepChestGNN: A comprehensive framework for enhanced lung disease identification through advanced graphical deep features. Sensors, 24(9):2830, 2024.
[14]
J. Niu, H. Li, C. Zhang, and D. Li. Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms. Med. Phys., 48(7):3878--3892, 2021.
[15]
G. Li, C. Li, G. Wu, D. Ji, and H. Zhang. Multi-view attention-guided multiple instance detection network for interpretable breast cancer histopathological image diagnosis. IEEE Access, 9:79671--79684, 2021. 3084360.
[16]
X. B. et al. Attention by selection: A deep selective attention approach to breast cancer classification. IEEE Trans. Med. Imaging, 2019. 2962013.
[17]
S. Y. Lu, S. H. Wang, and Y. D. Zhang. SAFNet: A deep spatial attention network with classifier fusion for breast cancer detection. Comput. Biol. Med., 148, 2022.
[18]
J. Deng, Y. Ma, D. ao Li, J. Zhao, Y. Liu, and H. Zhang. Classification of breast density categories based on SE-attention neural networks. Comput. Methods Programs Biomed., 193, 2020.
[19]
A.G.Roy,N.Navab,andC.Wachinger. Concurrentspatialandchannel?squeeze& excitation? in fully convolutional networks. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), volume 11070 LNCS
[20]
Z. Zhong et al. Squeeze-and-attention networks for semantic segmentation. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pages 13062--13071, 2020.
[21]
S. Zhang et al. Attention guided network for retinal image segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinfor matics), 11764 LNCS:797--805, 2019.
[22]
Cansu Buyuk, Burcin Arican Alpay, and Fusun Er. Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods. Dentomaxillofacial Radiology, 52(3), 2023.
[23]
Kaushik Raghavan. Attention guided grad-CAM: an improved explainable arti f icial intelligence model for infrared breast cancer detection. Multimedia Tools and Applications, pages 1--28, 2023.
[24]
Muhammad Attique Khan, Muhammad Sharif, Naeem Muhammad, Tanzila Saba, Arshad Rehman,Chang-HwanKyung,andJiHoonPark. Multimodalbraintumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology, 33(2):572--587, 2023.
[25]
M. Masud, A. E. Eldin Rashed, and M. S. Hossain. Convolutional neural network based models for diagnosis of breast cancer. Neural Comput. Appl., 34(14):11383 11394, 2022.
[26]
Y. Jiménez-Gaona, M. J. Rodríguez-Álvarez, and V. Lakshminarayanan. Deep learning-based computer-aided systems for breast cancer imaging: A critical review. Appl. Sci., 10(22), 2020.
[27]
F. Mentzer et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2022. URL https://proceedings.mlr.press/v139/yang21o.html%0Ahttp://arxiv.org/ abs/2010.08321%0Ahttp://arxiv.org/abs/2203.10886%0Ahttps://doi.org/10.1016/j. sigpro.2022.108589%0Ahttps://doi.org/10.1016/j.compbiomed.2022.105265.
[28]
J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell., 42(8):2011--2023, 2020. 2019.2913372.
[29]
W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy. Dataset of breast ultra sound images. Data Br., 28, 2020.
[30]
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), volume 9351, pages 234--241, 2015.
[31]
J. B.-I. J. of I. S., and undefined 2023. Convolutional neural networks for image classification. researchgate.net, 8(5), 2023.
[32]
A. Rajasekaran1. Image denoising using median filter with edge detection using canny operator. International Journal of Science and Research, 3(2):30--34, 2014.
[33]
G. Li, J. Hu, D. Shan, J. Ao, B. Huang, and Z. Huang. A CNN model based on innovative expansion operation improving the fault diagnosis accuracy of drilling pump fluid end. Mech Syst Signal Process, 187:109974, Mar. 2023.
[34]
F. Zhu, J. Li, B. Zhu, H. Li, and G. Liu. UAV remote sensing image stitching via improved VGG16 siamese feature extraction network. Expert Syst Appl, 229: 120525, Nov. 2023.
[35]
M. R. Islam Bhuiyan et al. Deep learning-based analysis of COVID-19 X-ray images: Incorporating clinical significance and assessing misinterpretation. Digit Health, 9, Jan. 2023.
[36]
Y. J. Qian and B. Wang. A new method for safety helmet detection based on convolutional neural network. PLoS One, 18(10):e0292970, Oct. 2023. 1371/JOURNAL.PONE.0292970.
[37]
O. Oktay, J. Schlemper, L. Le Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert. Attention U-Net: learning where to look for the pancreas. arXiv Prepr. arXiv1804.03999, Midl, 2018.
[38]
Y. Yan, Y. Liu, Y. Wu, H. Zhang, Y. Zhang, and L. Meng. Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images. Biomed. Signal Process. Control, 72:103299, 2022.
[39]
W. Zhao, H. Zhang, Y. Yan, Y. Fu, and H. Wang. A semantic segmentation algorithm using FCN with combination of BSLIC. Applied Sciences, 8(4):500, 2018.
[40]
Z. Zhou, M. Siddiquee, N. Tajbakhsh, and J. Liang. UNet: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging, 39(6):1856--1867, 2020.
[41]
X. Zhu, Z. Cheng, S. Wang, X. Chen, and G. Lu. Coronary angiography image segmentation based on PSPNet. Comput. Methods Programs Biomed., 200:105897, 2021.
[42]
Z. Zhuang, N. Li, A. N. Joseph Raj, V. G. V. Mahesh, and S. Qiu. An RDAU-NET model for lesion segmentation in breast ultrasound images. PLoS One, 14(8): e0221535, 2019.
[43]
H. Huang, L. Lin, R. Tong, H. Hu, and J. Wu. UNet 3: A full-scale connected UNet for medical image segmentation. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1055--1059, 2020.
[44]
M. Byra, P. Jarosik, A. Szubert, M. Galperin, H. Ojeda-Fournier, L. Olson, M. O'Boyle, C. Comstock, and M. Andre. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomed. Signal Process. Control, 61:102037, 2020.
[45]
V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(12):2481--2495, 2017.
[46]
J. Bharadiya. Convolutional neural networks for image classification. Inter national Journal of Innovative Science and Research Technology, 8(5):673--677, 2023.
[47]
Shan Ullah, Mehdi Pirahandeh, and Deok-Hwan Kim. Self-attention deep Con vLSTM with sparse-learned channel dependencies for wearable sensor-based human activity recognition. Neurocomputing, 571:127157, 2024.
[48]
Shahed Hossain, Sami Azam, Sidratul Montaha, Asif Karim, Sadia Sultana Chowa, Chaity Mondol, Md Zahid Hasan, and Mirjam Jonkman. Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using f ine-tuned CNN model. Heliyon, 9:e21369, 2023.
[49]
S. Tammina. Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ., 9(10):143--150, 2019.
[50]
M. Bansal et al. Transfer learning for image classification using VGG19: Caltech 101 image data set. J. Ambient Intell. Humaniz. Comput., 2023.
[51]
W. Wang et al. A novel image classification approach via dense-MobileNet models. Mobile Inf. Syst., 2020:7602384, 2020.
[52]
M. Sandler et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 4510--4520, 2018.
[53]
L. Wen, X. Li, and L. Gao. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl., 32(10):6111--6124, 2020.
[54]
H. Yang, J. Y. Kim, H. Kim, and S. P. Adhikari. Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans. Med. Imaging, 39(5):1306--1315, 2019

Index Terms

  1. EAH-Net: A Novel Ensemble Attention-Based Hybrid Architecture for Breast Cancer Diagnosis Utilizing Ultrasound Images

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MCHM'24: Proceedings of the 1st International Workshop on Multimedia Computing for Health and Medicine
    October 2024
    85 pages
    ISBN:9798400711954
    DOI:10.1145/3688868
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 October 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. breast cancer classification
    2. breast cancer segmentation
    3. ensemble attention model
    4. ultrasound breast cancer images

    Qualifiers

    • Research-article

    Conference

    MM '24
    Sponsor:
    MM '24: The 32nd ACM International Conference on Multimedia
    October 28 - November 1, 2024
    Melbourne VIC, Australia

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 79
      Total Downloads
    • Downloads (Last 12 months)79
    • Downloads (Last 6 weeks)11
    Reflects downloads up to 15 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media