Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Explainable Deep Learning for Breast Cancer Classification and Localization

Published: 08 January 2025 Publication History

Abstract

Breast cancer is a kind of cancer that forms in the cells of the breasts. After skin cancer, breast cancer represents the most common cancer diagnosed in women in the United States. As a matter of fact, in January 2022, there are more than 3.8 million women with a history of breast cancer in the United States, this is the reason why there is a need for novel methods for automatic breast cancer screening, with the aim of starting any therapy as quickly as possible to try to limit the proliferation of the disease. In this article, we propose a method aimed at detecting breast cancer through a deep learning network developed by authors. Moreover, the proposed method is able to provide prediction explainability by means of class activation mapping, aimed to automatically highlight the suspicious area on the image. We take into account a way to understand whether the cancer prediction and localization can be considered robust by analyzing the output of two different class activation mapping algorithms. We evaluate the effectiveness of the proposed method by using a dataset composed of 9,016 images obtaining an accuracy equal to 93.5%, thus showing the effectiveness of the proposed network for breast cancer detection and localization.

References

[1]
B. S. Abunasser, M. R. J. AL-Hiealy, I. S. Zaqout, and S. S. Abu-Naser. 2022. Breast cancer detection and classification using deep learning Xception algorithm. International Journal of Advanced Computer Science and Applications 13, 7 (2022). DOI:
[2]
L. Balkenende, J. Teuwen, and R. M. Mann. 2022. Application of deep learning in breast cancer imaging. In Seminars in Nuclear Medicine. Elsevier. DOI:
[3]
Z. Cao, L. Duan, G. Yang, T. Yue, and Q. Chen. 2019. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC Medical Imaging 19, 1 (2019), 1–9. DOI:
[4]
V. Debien, A. De Caluwé, X. Wang, M. Piccart-Gebhart, V. K. Tuohy, E. Romano, and L. Buisseret. 2023. Immunotherapy in breast cancer: An overview of current strategies and perspectives. NPJ Breast Cancer 9, 1 (2023), 7. DOI:
[5]
M. Di Giammarco, G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone. 2022. Explainable retinopathy diagnosis and localisation by means of class activation mapping. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN ’22). IEEE, 1–8. DOI:
[6]
M. Di Giammarco, F. Mercaldo, X. Zhou, P. Huang, A. Santone, M. Cesarelli, and F. Martinelli. 2023. A robust and explainable deep learning method for cervical cancer screening. In Proceedings of the International Conference on Applied Intelligence and Informatics. Springer, 111–125.
[7]
T. Fujioka, K. Kubota, M. Mori, Y. Kikuchi, L. Katsuta, M. Kasahara, G. Oda, T. Ishiba, T. Nakagawa, and U. Tateishi. 2019. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Japanese Journal of Radiology 37 (2019), 466–472. DOI:
[8]
I. J. Goodfellow, J. Shlens, and C. Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv:1412.6572. Retrieved from https://arxiv.org/abs/1412.6572
[9]
S. Han, H. K. Kang, J. Y. Jeong, M. H. Park, W. Kim, W. C. Bang, and Y. K. Seong. 2017. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine & Biology 62, 19 (2017), 7714. DOI:
[10]
A. Hijab, M. A. Rushdi, M. M. Gomaa, and A. Eldeib. 2019. Breast cancer classification in ultrasound images using transfer learning. In Proceedings of the 2019 5th International Conference on Advances in Bbiomedical Engineering (ICABME ’19). IEEE, 1–4. DOI:
[11]
A. A. Hossain, J. K. Nisha, and F. Johora. 2023. Breast cancer classification from ultrasound images using VGG16 model based transfer learning. DOI:
[12]
P. Huang, C. Li, P. He, H. Xiao, Y. Ping, P. Feng, S. Tian, H. Chen, F. Mercaldo, A. Santone, et al. 2024. MamlFormer: Priori-experience guiding transformer network via manifold adversarial multi-modal learning for laryngeal histopathological grading. Information Fusion 108 (2024), 102333.
[13]
S. Karthik, R. Srinivasa Perumal, and P. Chandra Mouli. 2018. Breast cancer classification using deep neural networks. Knowledge Computing and Its Applications: Knowledge Manipulation and Processing Techniques, Vol. 1, 227–241. DOI:
[14]
A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, Vol. 25, 9 pages.
[15]
G. Latif, M. O. Butt, F. Y. Al Anezi, and J. Alghazo. 2020. Ultrasound image despeckling and detection of breast cancer using deep CNN. In Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF ’20). IEEE, 1–5. DOI:
[16]
Y. Li, C. Wang, T. Huang, X. Yu, and B. Tian. 2023. The role of cancer-associated fibroblasts in breast cancer metastasis. Frontiers in Oncology 13 (2023), 1194835. DOI:
[17]
M. Masud, A. E. Eldin Rashed, and M. Shamim Hossain. 2020. Convolutional neural network-based models for diagnosis of breast cancer. Neural Computing and Applications (2020), 1–12. DOI:
[18]
F. Mercaldo, G. Ciaramella, G. Iadarola, M. Storto, F. Martinelli, and A. Santone. 2022. Towards explainable quantum machine learning for mobile malware detection and classification. Applied Sciences 12, 23 (2022), 12025.
[19]
E. Nolan, G. J. Lindeman, and J. E. Visvader. 2023. Deciphering breast cancer: from biology to the clinic. Cell (2023). DOI:
[20]
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, 618–626. DOI:
[21]
S. M. Shah, R. A. Khan, S. Arif, and U. Sajid. 2022. Artificial intelligence for breast cancer analysis: Trends & directions. Computers in Biology and Medicine 142 (2022), 105221. DOI:
[22]
K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. Retrieved from https://arxiv.org/abs/1409.1556
[23]
H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu. 2020. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 24–25. DOI:
[24]
M. A. Aslam, and D. Cui. 2020. Breast cancer classification using deep convolutional neural network. Journal of Physics: Conference Series 1584, 1 (2020), 012005.
[25]
H. Aljuaid, N. Alturki, N. Alsubaie, L. Cavallaro, A. Liotta. 2022. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Computer Methods and Programs in Biomedicine 223 (2022), 106951. DOI:
[26]
X. Zhang, H. Li, C. Wang, W. Cheng, Y. Zhu, D. Li, H. Jing, S. Li, J. Hou, J. Li, et al. 2021. Evaluating the accuracy of breast cancer and molecular subtype diagnosis by ultrasound image deep learning model. Frontiers in Oncology 11 (2021), 623506. DOI:
[27]
M. Zourhri, S. Hamida, N. Akouz, B. Cherradi, H. Nhaila, and M. El Khaili. 2023. Deep learning technique for classification of breast cancer using ultrasound images. In Proceedings of the 2023 3rd International Conference on Innovative Research in Applied Science, Eengineering and Technology (IRASET ’23). IEEE, 1–8. DOI:

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computing for Healthcare
ACM Transactions on Computing for Healthcare  Volume 6, Issue 1
January 2025
204 pages
EISSN:2637-8051
DOI:10.1145/3703027
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 January 2025
Online AM: 01 November 2024
Accepted: 15 October 2024
Revised: 02 October 2024
Received: 21 December 2023
Published in HEALTH Volume 6, Issue 1

Check for updates

Author Tags

  1. Deep Learning
  2. Breast
  3. Cancer
  4. Explainability
  5. Classification

Qualifiers

  • Research-article

Funding Sources

  • EU DUCA, EU CyberSecPro, SYNAPSE, PTR 22–24 P2.01
  • EU–NextGenerationEU
  • e-DAI
  • Digital Driven Diagnostics,
  • FORESEEN

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 234
    Total Downloads
  • Downloads (Last 12 months)234
  • Downloads (Last 6 weeks)83
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media