Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Deep learning aided prostate cancer detection for early diagnosis & treatment using MR with TRUS images

Published: 14 February 2024 Publication History

Abstract

Although difficult, robust and reliable synchronization of multimodal medical pictures has several practical uses. For instance, in MR-TRUS fusing guided prostate treatments, picture registration between the two modalities is essential. However, due to the significant variety in image appearance and correlation, MR-TRUS picture registration remains a challenging issue. In this research, we suggest employing deep convolutional neural networks (CNN) i.e. three dimensional CNN U-NET (3D-Conv-Net) to develop a resemblance measure for MR-TRUS registration. Finally, for the second-order optimal of the taught measure, we apply a composite optimisation method that searches the solution space for an appropriate starting point. We also use a multi-stage process to improve the optimisation metric.

References

[1]
Hasenstab K.A., Cunha G.M., Higaki A., Ichikawa S., Wang K., Delgado T., Brunsing R.L., Schlein A.N., Bittencourt L.K., Schwartzman A., Fowler K., Hsiao A. and Sirlin C.B., Fully automated convolutional neural network-based affine algorithm improves liver registration and lesion co-localization on hepatobiliary phase T1-weighted MR images, European Radiology Experimental 3 (2019).
[2]
Wright R., Khanal B., Gómez A., Skelton E., Matthew J., Hajnal J.V., Rueckert D. and Schnabel J.A., LSTM Spatial Co-transformer Networks for Registration of 3D Fetal US and MR Brain Images, DATRA/PIPPI@MICCAI, (2018).
[3]
Cao X., Gao X., Li W.J., Liu P., Qin S., Dou Y., Li H., Shang S., Gu X., Ma M., Qi X., Xie M. and Wang D., Contouring lumbosacral plexus nerves with MR neurography and MR/CT deformable registration technique, Frontiers in Oncology 12 (2022).
[4]
Lee M., Song K., Lee J., Choe B. and Suh T., Metal artifacts with dental implants: Evaluation using a dedicated CT/MR oral phantom with registration of the CT and MR images, Scientific Reports, 9 (2019).
[5]
Aslan M.F. and Durdu A., Fusion of CT and MR Liver Images by SURF-Based Registration, International Journal of Intelligent Systems and Applications in Engineering (2019).
[6]
Zhu Y., Zhou Z., Liao G. and Yuan K., Deformable Registration Using Average Geometric Transformations for Brain MR Images, 2019, ArXiv, abs/1907.09670.
[7]
Han R., Jones C.K., Lee J., Zhang X., Wu P., Vagdargi P., Uneri A., Helm P.A., Luciano M., Anderson W.S. and Siewerdsen J.H., Joint synthesis and registration network for deformable MR-CBCT image registration for neurosurgical guidance, Physics in Medicine & Biology 67 (2022).
[8]
Pappas E.P., Seimenis I., Kouris P., Theocharis S., Lampropoulos K.I., Kollias G. and Karaiskos P., Target localization accuracy in frame-based stereotactic radiosurgery: Comon between MR-only and MR/CT co-registration approaches, Journal of Applied Clinical Medical Physics 23 (2022)–paris.
[9]
Rahmani M., Moghadassi H.A., Farnia P. and Ahmadian A., D2BGAN: Dual Discriminator Bayesian Generative Adversarial Network for Deformable MR-Ultrasound Registration Applied to Brain Shift compensation, bioRxiv, (2022).
[10]
Ayub S., Kannan R.J., S S., Alsini R., Hasanin T. and Sasidhar C., LSTM-Based RNN Framework to Remove Motion Artifacts in Dynamic Multicontrast MR Images with Registration Model, Wireless Communications and Mobile Computing (2022).
[11]
Cao X., Gao X., Li W.J., Liu P., Qin S., Dou Y., Li H., Shang S., Gu X., Ma M., Qi X., Xie M. and Wang D., Contouring lumbosacral plexus nerves with MR neurography and MR/CT deformable registration technique, Frontiers in Oncology 12 (2022).
[12]
Wei D., Ahmad S., Guo Y., Chen L., Huang Y., Ma L., Wu Z., Li G., Wang L., Lin W., Yap P., Shen D. and Wang Q., Recurrent Tissue-Aware Network for Deformable Registration of Infant Brain MR Images, IEEE Transactions on Medical Imaging 41 (2021), 1219–1229.
[13]
Oh D., Kim B.H., Lee J. and Shin Y., Unsupervised Deep Learning Network with Self-Attention Mechanism for Non-Rigid Registration of 3D Brain MR Images, J Medical Imaging Health Informatics 11 (2021), 736–751.
[14]
Farnia P., Makkiabadi B., Alimohamadi M., Najafzadeh E., Basij M., Yan Y., Mehrmohammadi M. and Ahmadian A., Photoacoustic-MR Image Registration Based on a Co-Sparse Analysis Model to Compensate for Brain Shift, Sensors (Basel, Switzerland) 22 (2021).
[15]
Fontana L., Mastropietro A., Scalco E., Peruzzo D., Beretta E., Strazzer S., Arrigoni F. and Rizzo G., Multi-Steps Registration Protocol for Multimodal MR Images of Hip Skeletal Muscles in a Longitudinal Study, Applied Sciences 10 (2020), 7823.
[16]
Zeng Q., Fu Y., Jeong J.J., Zhen T., Wang T., Lei Y., Mao H., Jani A.B., Patel P.R., Curran W.J., Liu T. and Yang X., Weekly supervised convolutional long short-term memory neural networks for MR-TRUS registration, Medical Imaging (2020).
[17]
Zeng Q., Fu Y., Jeong J.J., Lei Y., Wang T., Mao H., Jani A.B., Patel P.R., Curran W.J., Liu T. and Yang X., Weakly non-rigid MR-TRUS prostate registration using fully convolutional and recurrent neural networks, Medical Imaging: Image Processing (2020).
[18]
Haskins G., Kruecker J., Kruger U., Xu S., Pinto P.A., Wood B.J. and Yan P., Learning deep similarity metric for 3D MR– TRUS image registration, International Journal of Computer Assisted Radiology and Surgery 14 (2018), 417–425.
[19]
Liu D., Wang L., Du Y., Cong M. and Li Y., 3-D Prostate MR and TRUS Images Detection and Segmentation for Puncture Biopsy, IEEE Transactions on Instrumentation and Measurement 71 (2022), 1–13.
[20]
Adamson P.M., SSFD: Self-Supervised Feature Distance as an MR Image Reconstruction Quality Metric, (2021).
[21]
Cong S., Yang Y., Zhou Y., Wang X., Luo H., Wei Y., Liang H. and Yao X., Domain-Distance Adapted Super-Resolution Reconstruction of Low-Field MR Brain Images, medRxiv (2023).
[22]
Ahmed I.H., Mohamed Ali H.G. Hassan, Abo M.E. ElMaaty and S.E. ElDaisty El Metwally, Role of MRI in diagnosis of prostate cancer and correlation of results with transrectal ultrasound guided biopsy “TRUS”, Egyptian Journal of Radiology and Nuclear Medicine 53 (2022), 1–13.
[23]
Chen J., Tavakkolnia I., Chen C., Wang Z. and Haas H., The Movement-Rotation (MR) Correlation Function and Coherence Distance of VLC Channels, Journal of Lightwave Technology 38 (2020), 6759–6770.
[24]
Su C., Huang R., Liu C., Yin T. and Du B., Prostate MR Image Segmentation With Self-Attention Adversarial Training Based on Wasserstein Distance, IEEE Access 7 (2019), 184276–184284.
[25]
Bi K., Tan Y., Cheng K., Chen Q. and Wang Y., Sequential shape similarity for active contour based left ventricle segmentation in cardiac cine MR image, Mathematical Biosciences and Engineering: MBE 19(2) (2022), 1591–1608.
[26]
Salvi M., Santi B.D., Pop B., Bosco M., Giannini V., Regge D., Molinari F. and Meiburger K.M., Integration of Deep Learning and Active Shape Models for More Accurate Prostate Segmentation in 3D MR Images, Journal of Imaging 8 (2022).
[27]
Huang J., Shao D., Liu H., Xiang Y., Ma L., Yi S. and Xu H., A lightweight segmentation method based on residual U-Net for MR images, J Intell Fuzzy Syst 42 (2022), 5085–5095.
[28]
Huang J., Shao D., Liu H., Xiang Y., Ma L., Yi S. and Xu H., A lightweight segmentation method based on residual U-Net for MR images, J Intell Fuzzy Syst 42 (2022), 5085–5095.
[29]
Huang W., Yang H., Liu X., Li C., Zhang I., Wang R., Zheng H. and Wang S., A Coarse-to-Fine Deformable Transformation Framework for Unsupervised Multi-Contrast MR Image Registration with Dual Consistency Constraint, IEEE Transactions on Medical Imaging 40 (2021), 2589–2599.
[30]
Cao Y., Zhu Z., Rao Y., Qin C., Lin D., Dou Q., Ni D. and Wang Y., Edge-Aware Pyramidal Deformable Network for Unsupervised Registration of Brain MR Images, Frontiers in Neuroscience 14 (2021).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology
Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology  Volume 46, Issue 2
2024
2363 pages

Publisher

IOS Press

Netherlands

Publication History

Published: 14 February 2024

Author Tags

  1. Image registration
  2. convolutional neural networks
  3. multimodal image fusion
  4. and prostate cancer

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media