Wireless sensor networks (WSNs) have recently emerged as a promising platform for many non-traditional applications, such as wildfire monitoring and battlefield surveillance. Due to bug fixes, feature enhancements and demand changes, the code running on deployed wireless sensors often needs to be updated, which is done through energy-consuming wireless communication. Since the energy supply of battery-powered sensors is limited, the network lifetime is reduced if more energy is consumed for software update, especially at the early stage of a WSNs life when bug fixes and feature enhancements are frequent, or in WSNs that support multiple applications, and frequently demand a subset of sensors to fetch and run different applications.
In this dissertation, I propose an energy-efficient software update management framework for WSNs. The diff-based software update process can be divided into three phases: new binary generation, diff-patch generation, and patch distribution. I identify the energy-saving opportunities in each phase and develop a set of novel schemes to achieve overall energy efficiency.
In the phase of generating new binary after source code changes, I design an update-conscious compilation approach to improve the code similarity between the new and old binaries. In the phase of generating update patch, I adopt simple primitives in the literature and develop a set of advanced primitives. I then study the energy-efficient patch distribution in WSNs and develop a multicast-based code distribution protocol to effectively disseminate the patch to individual sensors.
In summary, this dissertation successfully addresses an important problem in WSNs. Update-conscious compilation is the first work that compiles the code with the goal of improving code similarity, and proves to be effective. The other components in the proposed framework also advance the state of the art. The proposed software update management framework benefits all WSN users, as software update is indispensable in WSNs. The techniques developed in this framework can also be adapted to other platforms such as the smart phone network.
Recommendations
The optimization of sensor relocation in wireless mobile sensor networks
Wireless Sensor Networks (WSNs) have been an active research area these years due to their broad range of potential applications. Several research issues, which include energy-aware routing, sensor deployment problems, data aggregation, etc., have been ...
A Novel Node Information Update Multicast Algorithm in Wireless Sensor Networks
NSWCTC '09: Proceedings of the 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing - Volume 01Wireless Sensor Networks (WSN) are composed of a large number of sensor nodes which are connected by wireless channels. Some of these sensor nodes are regarded as critical nodes which are responsible for the management of the other nodes in their ...
Relay Node Placement in Wireless Sensor Networks
A wireless sensor network consists of many low-cost, low-power sensor nodes, which can perform sensing, simple computation, and transmission of sensed information. Long distance transmission by sensor nodes is not energy efficient since energy ...